{"title":"通过靶向 IKKβ/NF-κB 信号传递,受控 TPCA-1 递送可设计出有利于肌腱再生的增生龛位","authors":"","doi":"10.1016/j.bioactmat.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":null,"pages":null},"PeriodicalIF":18.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling\",\"authors\":\"\",\"doi\":\"10.1016/j.bioactmat.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.</div></div>\",\"PeriodicalId\":8762,\"journal\":{\"name\":\"Bioactive Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.0000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioactive Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452199X24004614\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X24004614","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Controlled TPCA-1 delivery engineers a pro-tenogenic niche to initiate tendon regeneration by targeting IKKβ/NF-κB signaling
Tendon repair remains challenging due to its poor intrinsic healing capacity, and stem cell therapy has emerged as a promising strategy to promote tendon regeneration. Nevertheless, the inflammatory environment following acute tendon injuries disrupts stem cell differentiation, leading to unsatisfied outcomes. Our study recognized the critical role of NF-κB signaling in activating inflammation and suppressing tenogenic differentiation of stem cells after acute tendon injury via multiomics analysis. TPCA-1, a selective inhibitor of IKKβ/NF-κB signaling, efficiently restored the impaired tenogenesis of stem cells in the inflammatory environment. By developing a microsphere-incorporated hydrogel system for stem cell delivery and controlled release of TPCA-1, we successfully engineered a pro-tenogenic niche to initiate tenogenesis for tendon regeneration. Collectively, we recognize NF-κB signaling as a critical target to tailor a pro-tenogenic niche and propose the combined delivery of stem cells and TPCA-1 as a potential strategy for acute tendon injuries.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.