Yun Cheng , Xianglin Yu , Yongjiu Shi , YiuKwong Pang
{"title":"G550 镀锌钢-混凝土楼板耐火性的实验和数值研究","authors":"Yun Cheng , Xianglin Yu , Yongjiu Shi , YiuKwong Pang","doi":"10.1016/j.jcsr.2024.109092","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the increasing demand for improved fire performance of composite floor systems in high-rise buildings by constructing a new type of composite slab, which is composed of concrete and closed profiled steel deck fabricated with G550 galvanized steel. Six full-scale standard fire tests of composite slabs are conducted to understand the thermal-mechanical response of the new composite slab. The results reveal that the fire duration of all the novel composite slabs exceeds 60 min, demonstrating significantly improved fire performance comparing to a conventional slab. The failure mode for all tested composite slabs is flexural failure, with limited end slip that indicates a good preservation of composite action during fire exposure. Based on the experimental results, numerical model is established and validated through the comparison of temperature and deformation data. A series of parametric analyses are carried out numerically, where overall slab depth, deck depth, supported span and uniform loads are identified as the dominant effects on the fire resistance. The results indicate that the existing design methods specified in the current standards are not fully applicable to the newly proposed composite slab. Simplified calculating methods for insulation-based and bearing capacity-based fire resistance are suggested.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109092"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical investigation of fire resistance of G550 galvanized steel-concrete slabs\",\"authors\":\"Yun Cheng , Xianglin Yu , Yongjiu Shi , YiuKwong Pang\",\"doi\":\"10.1016/j.jcsr.2024.109092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the increasing demand for improved fire performance of composite floor systems in high-rise buildings by constructing a new type of composite slab, which is composed of concrete and closed profiled steel deck fabricated with G550 galvanized steel. Six full-scale standard fire tests of composite slabs are conducted to understand the thermal-mechanical response of the new composite slab. The results reveal that the fire duration of all the novel composite slabs exceeds 60 min, demonstrating significantly improved fire performance comparing to a conventional slab. The failure mode for all tested composite slabs is flexural failure, with limited end slip that indicates a good preservation of composite action during fire exposure. Based on the experimental results, numerical model is established and validated through the comparison of temperature and deformation data. A series of parametric analyses are carried out numerically, where overall slab depth, deck depth, supported span and uniform loads are identified as the dominant effects on the fire resistance. The results indicate that the existing design methods specified in the current standards are not fully applicable to the newly proposed composite slab. Simplified calculating methods for insulation-based and bearing capacity-based fire resistance are suggested.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"224 \",\"pages\":\"Article 109092\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24006424\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006424","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental and numerical investigation of fire resistance of G550 galvanized steel-concrete slabs
This paper investigates the increasing demand for improved fire performance of composite floor systems in high-rise buildings by constructing a new type of composite slab, which is composed of concrete and closed profiled steel deck fabricated with G550 galvanized steel. Six full-scale standard fire tests of composite slabs are conducted to understand the thermal-mechanical response of the new composite slab. The results reveal that the fire duration of all the novel composite slabs exceeds 60 min, demonstrating significantly improved fire performance comparing to a conventional slab. The failure mode for all tested composite slabs is flexural failure, with limited end slip that indicates a good preservation of composite action during fire exposure. Based on the experimental results, numerical model is established and validated through the comparison of temperature and deformation data. A series of parametric analyses are carried out numerically, where overall slab depth, deck depth, supported span and uniform loads are identified as the dominant effects on the fire resistance. The results indicate that the existing design methods specified in the current standards are not fully applicable to the newly proposed composite slab. Simplified calculating methods for insulation-based and bearing capacity-based fire resistance are suggested.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.