Bolin Sun, Lei Guo, Zhe Wang, Xi Lan, Zhancheng Guo
{"title":"在超重力增强分离条件下从废铝屑中可持续回收纯铝:一种清洁工艺","authors":"Bolin Sun, Lei Guo, Zhe Wang, Xi Lan, Zhancheng Guo","doi":"10.1016/j.susmat.2024.e01148","DOIUrl":null,"url":null,"abstract":"<div><div>Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01148"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable recycling of pure aluminum from waste chips under supergravity-enhanced separation: A cleaning process\",\"authors\":\"Bolin Sun, Lei Guo, Zhe Wang, Xi Lan, Zhancheng Guo\",\"doi\":\"10.1016/j.susmat.2024.e01148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01148\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003282\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003282","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Sustainable recycling of pure aluminum from waste chips under supergravity-enhanced separation: A cleaning process
Large quantities of chips containing high levels of aluminum are always inevitably produced during machining process of aluminum products, which is a valuable renewable resource. In this paper, an environmental-friendly method for direct and continuous recovery of same-level recycled Al from waste chips under supergravity-induced was proposed. The oxide film covering the surface of the molten Al-chips was easily disrupted under super-gravity, and subsequently almost all of Al melt detached from the oxide film and flowed rapidly through the microporous ceramic foam filter, with a yield ratio of more than 97 %. During this process, all fine broken oxide-film particles and large amounts of primary iron-rich particles in the melt were captured in the complex channels of the filter, resulting in clean 1xxx series recycled Al with free inclusions and impurity iron content of less than 0.28 wt%. In addition, a sustainable process and a continuous centrifugal unit for recycling aluminum chips were designed, the economic and environmental advantages of which demonstrate the feasibility of sustainable regeneration of aluminum chip resources on an industrial scale via supergravity technique.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.