Zijia Li , Hans-Peter Schröcker , Johannes Siegele
{"title":"共形三空间有理运动因式分解的几何算法","authors":"Zijia Li , Hans-Peter Schröcker , Johannes Siegele","doi":"10.1016/j.jsc.2024.102388","DOIUrl":null,"url":null,"abstract":"<div><div>Rational motions in conformal three space can be parametrized by polynomials with coefficients in a suitable Clifford algebra. We call them “spinor polynomials.” In this text we present a new algorithm to decompose generic spinor polynomials into linear factors. The factorization algorithm is based on the “kinematics at infinity”. Factorizations exist generically but not generally and are typically not unique. We prove that generic multiples of non-factorizable spinor polynomials admit factorizations and we demonstrate at hand of an example how our ideas can be used to tackle the hitherto unsolved problem of “factorizing” algebraic motions.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geometric algorithm for the factorization of rational motions in conformal three space\",\"authors\":\"Zijia Li , Hans-Peter Schröcker , Johannes Siegele\",\"doi\":\"10.1016/j.jsc.2024.102388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational motions in conformal three space can be parametrized by polynomials with coefficients in a suitable Clifford algebra. We call them “spinor polynomials.” In this text we present a new algorithm to decompose generic spinor polynomials into linear factors. The factorization algorithm is based on the “kinematics at infinity”. Factorizations exist generically but not generally and are typically not unique. We prove that generic multiples of non-factorizable spinor polynomials admit factorizations and we demonstrate at hand of an example how our ideas can be used to tackle the hitherto unsolved problem of “factorizing” algebraic motions.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000920\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000920","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A geometric algorithm for the factorization of rational motions in conformal three space
Rational motions in conformal three space can be parametrized by polynomials with coefficients in a suitable Clifford algebra. We call them “spinor polynomials.” In this text we present a new algorithm to decompose generic spinor polynomials into linear factors. The factorization algorithm is based on the “kinematics at infinity”. Factorizations exist generically but not generally and are typically not unique. We prove that generic multiples of non-factorizable spinor polynomials admit factorizations and we demonstrate at hand of an example how our ideas can be used to tackle the hitherto unsolved problem of “factorizing” algebraic motions.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.