{"title":"探测多孔介质的广义多尺度可混合非连续伽勒金(GMsHDG)方法","authors":"Do Yang Park, Minam Moon","doi":"10.1016/j.cam.2024.116320","DOIUrl":null,"url":null,"abstract":"<div><div>The Detective Generalized Multiscale Hybridizable Discontinuous Galerkin (Detective GMsHDG) method aims to further reduce the computational cost of the GMsHDG method. The GMsHDG method itself reduces the computational cost of the HDG method by employing an upscaled structure on a two-grid mesh. Given a PDE within a specified domain, we subdivide the domain into polygonal subdomains and transforms a HDG problem into globular and local problems. Globular problem concerns whether the solutions on smaller domains glue well to form a globular solution. The process involves generation of multiscale spaces, which is a vector space of functions defined on edges of the polygonal regions. A naive approximation by polynomials fails, especially in porous media, necessitating the generation of problem-specific spaces. The Detective GMsHDG method improves this process by replacing the generation of the multiscale space with the detective algorithm. The Detective GMsHDG method has two stages. First is called an offline stage. During the offline stage, we construct a detective function which, given a permeability distribution, it gives a multiscale space. Later stage is called the offline stage where, given the multiscale space, we use GMsHDG method to solve a given PDE numerically. We show numerical results to argue the liability of the solution using the detective GMsHDG method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116320"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detective generalized multiscale hybridizable discontinuous Galerkin(GMsHDG) method for porous media\",\"authors\":\"Do Yang Park, Minam Moon\",\"doi\":\"10.1016/j.cam.2024.116320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Detective Generalized Multiscale Hybridizable Discontinuous Galerkin (Detective GMsHDG) method aims to further reduce the computational cost of the GMsHDG method. The GMsHDG method itself reduces the computational cost of the HDG method by employing an upscaled structure on a two-grid mesh. Given a PDE within a specified domain, we subdivide the domain into polygonal subdomains and transforms a HDG problem into globular and local problems. Globular problem concerns whether the solutions on smaller domains glue well to form a globular solution. The process involves generation of multiscale spaces, which is a vector space of functions defined on edges of the polygonal regions. A naive approximation by polynomials fails, especially in porous media, necessitating the generation of problem-specific spaces. The Detective GMsHDG method improves this process by replacing the generation of the multiscale space with the detective algorithm. The Detective GMsHDG method has two stages. First is called an offline stage. During the offline stage, we construct a detective function which, given a permeability distribution, it gives a multiscale space. Later stage is called the offline stage where, given the multiscale space, we use GMsHDG method to solve a given PDE numerically. We show numerical results to argue the liability of the solution using the detective GMsHDG method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116320\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005685\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005685","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Detective generalized multiscale hybridizable discontinuous Galerkin(GMsHDG) method for porous media
The Detective Generalized Multiscale Hybridizable Discontinuous Galerkin (Detective GMsHDG) method aims to further reduce the computational cost of the GMsHDG method. The GMsHDG method itself reduces the computational cost of the HDG method by employing an upscaled structure on a two-grid mesh. Given a PDE within a specified domain, we subdivide the domain into polygonal subdomains and transforms a HDG problem into globular and local problems. Globular problem concerns whether the solutions on smaller domains glue well to form a globular solution. The process involves generation of multiscale spaces, which is a vector space of functions defined on edges of the polygonal regions. A naive approximation by polynomials fails, especially in porous media, necessitating the generation of problem-specific spaces. The Detective GMsHDG method improves this process by replacing the generation of the multiscale space with the detective algorithm. The Detective GMsHDG method has two stages. First is called an offline stage. During the offline stage, we construct a detective function which, given a permeability distribution, it gives a multiscale space. Later stage is called the offline stage where, given the multiscale space, we use GMsHDG method to solve a given PDE numerically. We show numerical results to argue the liability of the solution using the detective GMsHDG method.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.