{"title":"具有热位移历史依赖性的摩尔-吉布森-汤普森型热弹性问题的数值分析","authors":"N. Bazarra , J.R. Fernández , R. Quintanilla","doi":"10.1016/j.cam.2024.116317","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study, from the numerical point of view, a heat conduction model which is described by the history dependent version of the Moore–Gibson–Thompson equation. First, we consider the thermal problem, introducing a fully discrete approximation by means of the finite element method and the implicit Euler scheme. The discrete stability of its solution is proved, and an a priori error analysis is provided, which leads to the linear convergence imposing suitable regularity conditions. Secondly, we deal with the natural extension to the thermoelastic case. Following the analysis of the thermal problem, similar results are shown. Finally, we present some one-dimensional numerical simulations for both problems which demonstrate the accuracy of the approximations and the behavior of the discrete energies and the solutions.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116317"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a thermoelastic problem of Moore–Gibson–Thompson type with history dependence in the thermal displacement\",\"authors\":\"N. Bazarra , J.R. Fernández , R. Quintanilla\",\"doi\":\"10.1016/j.cam.2024.116317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study, from the numerical point of view, a heat conduction model which is described by the history dependent version of the Moore–Gibson–Thompson equation. First, we consider the thermal problem, introducing a fully discrete approximation by means of the finite element method and the implicit Euler scheme. The discrete stability of its solution is proved, and an a priori error analysis is provided, which leads to the linear convergence imposing suitable regularity conditions. Secondly, we deal with the natural extension to the thermoelastic case. Following the analysis of the thermal problem, similar results are shown. Finally, we present some one-dimensional numerical simulations for both problems which demonstrate the accuracy of the approximations and the behavior of the discrete energies and the solutions.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116317\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272400565X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272400565X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Numerical analysis of a thermoelastic problem of Moore–Gibson–Thompson type with history dependence in the thermal displacement
In this work, we study, from the numerical point of view, a heat conduction model which is described by the history dependent version of the Moore–Gibson–Thompson equation. First, we consider the thermal problem, introducing a fully discrete approximation by means of the finite element method and the implicit Euler scheme. The discrete stability of its solution is proved, and an a priori error analysis is provided, which leads to the linear convergence imposing suitable regularity conditions. Secondly, we deal with the natural extension to the thermoelastic case. Following the analysis of the thermal problem, similar results are shown. Finally, we present some one-dimensional numerical simulations for both problems which demonstrate the accuracy of the approximations and the behavior of the discrete energies and the solutions.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.