微挤压发泡制造多孔聚酯弹性纤维,用于辐射冷却织物

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Zelin Wang , Yushu Wang , Bichi Chen, Hanyi Huang, Yaozong Li, Wentao Zhai
{"title":"微挤压发泡制造多孔聚酯弹性纤维,用于辐射冷却织物","authors":"Zelin Wang ,&nbsp;Yushu Wang ,&nbsp;Bichi Chen,&nbsp;Hanyi Huang,&nbsp;Yaozong Li,&nbsp;Wentao Zhai","doi":"10.1016/j.susmat.2024.e01151","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change has unleashed relentless global heatwaves, posing grave threats to the physical and mental well-being of outdoor laborers and the smooth functioning of society. Porous polymeric fibers exhibit promising potential in personal thermal management for wearable fabrics. Nevertheless, the absence of an environmentally friendly, cost-effective, and efficient method for producing the desired porous fibers remains a formidable challenge. Here, we introduce a pioneering micro-extrusion foaming technique for crafting elastic porous fibers endowed with dense longitudinally oriented cell morphologies, remarkable porosity of 69 % and elongation of 668 %. The technique enabled the continuous production of porous fibers exceeding 3000 m in length in a single operation, with fiber diameters controlled to approximately 0.25–0.55 mm. Fabrics woven from the elastic porous fiber offered a soft touch, proficiently reflecting more than 90.0 % of incident solar radiation and emitting 91.9 % of absorbed heat radiation, thereby achieving a theoretical radiant cooling power of 111.46 W/m<sup>2</sup> on sunlit days. Leveraging the controllable and scalable attributes of micro-extrusion foaming, the porous fiber is primed for practical deployment and expansion into diverse wearable applications.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01151"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-extrusion foaming fabricating porous polyester elastomeric fiber for using in radiative cooling fabrics\",\"authors\":\"Zelin Wang ,&nbsp;Yushu Wang ,&nbsp;Bichi Chen,&nbsp;Hanyi Huang,&nbsp;Yaozong Li,&nbsp;Wentao Zhai\",\"doi\":\"10.1016/j.susmat.2024.e01151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change has unleashed relentless global heatwaves, posing grave threats to the physical and mental well-being of outdoor laborers and the smooth functioning of society. Porous polymeric fibers exhibit promising potential in personal thermal management for wearable fabrics. Nevertheless, the absence of an environmentally friendly, cost-effective, and efficient method for producing the desired porous fibers remains a formidable challenge. Here, we introduce a pioneering micro-extrusion foaming technique for crafting elastic porous fibers endowed with dense longitudinally oriented cell morphologies, remarkable porosity of 69 % and elongation of 668 %. The technique enabled the continuous production of porous fibers exceeding 3000 m in length in a single operation, with fiber diameters controlled to approximately 0.25–0.55 mm. Fabrics woven from the elastic porous fiber offered a soft touch, proficiently reflecting more than 90.0 % of incident solar radiation and emitting 91.9 % of absorbed heat radiation, thereby achieving a theoretical radiant cooling power of 111.46 W/m<sup>2</sup> on sunlit days. Leveraging the controllable and scalable attributes of micro-extrusion foaming, the porous fiber is primed for practical deployment and expansion into diverse wearable applications.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01151\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003312\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003312","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

气候变化引发了无情的全球热浪,严重威胁着户外劳动者的身心健康和社会的正常运转。多孔聚合物纤维在可穿戴织物的个人热管理方面展现出巨大的潜力。然而,缺乏一种环保、经济、高效的方法来生产所需的多孔纤维仍然是一项艰巨的挑战。在此,我们介绍了一种开创性的微挤压发泡技术,用于制造具有致密纵向定向细胞形态的弹性多孔纤维,其孔隙率高达 69%,伸长率高达 668%。该技术可一次性连续生产长度超过 3000 米的多孔纤维,纤维直径控制在 0.25-0.55 毫米左右。用弹性多孔纤维织成的织物具有柔软的触感,能有效反射 90.0% 以上的入射太阳辐射,并释放 91.9% 的吸收热辐射,从而在晴天达到 111.46 W/m2 的理论辐射制冷功率。利用微挤压发泡的可控性和可扩展性,多孔纤维已准备就绪,可实际部署并扩展到各种可穿戴应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro-extrusion foaming fabricating porous polyester elastomeric fiber for using in radiative cooling fabrics
Climate change has unleashed relentless global heatwaves, posing grave threats to the physical and mental well-being of outdoor laborers and the smooth functioning of society. Porous polymeric fibers exhibit promising potential in personal thermal management for wearable fabrics. Nevertheless, the absence of an environmentally friendly, cost-effective, and efficient method for producing the desired porous fibers remains a formidable challenge. Here, we introduce a pioneering micro-extrusion foaming technique for crafting elastic porous fibers endowed with dense longitudinally oriented cell morphologies, remarkable porosity of 69 % and elongation of 668 %. The technique enabled the continuous production of porous fibers exceeding 3000 m in length in a single operation, with fiber diameters controlled to approximately 0.25–0.55 mm. Fabrics woven from the elastic porous fiber offered a soft touch, proficiently reflecting more than 90.0 % of incident solar radiation and emitting 91.9 % of absorbed heat radiation, thereby achieving a theoretical radiant cooling power of 111.46 W/m2 on sunlit days. Leveraging the controllable and scalable attributes of micro-extrusion foaming, the porous fiber is primed for practical deployment and expansion into diverse wearable applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信