{"title":"基于仿生学的蜂群智能优化算法在近红外光谱学中的波长选择研究","authors":"","doi":"10.1016/j.infrared.2024.105594","DOIUrl":null,"url":null,"abstract":"<div><div>Wavelength selection is one of the most important steps in the modeling of near-infrared spectroscopy (NIRS), which is of great significance to reduce model complexity and improve model performance. In this paper, a total of ten bionics-based swarm intelligence optimization algorithms (BSIOAs) inspired by natural creatures, such as Harris Hawks Optimization (HHO), Butterfly Optimization Algorithm (BOA), Whale Optimization Algorithm (WOA), Monarch Butterfly Optimization (MBO), Grey Wolf Optimization (GWO), Fruit Fly Optimization Algorithm (FOA), Bat Algorithm (BA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) were studied on application to wavelength selection in the NIRS modeling. Three benchmark NIRS datasets were used to evaluate the algorithms by calculating the indicators, including coefficients of determination, root mean square error, and residual predictive deviation in calibration and prediction. The results obtained showed that these BSIOAs can significantly reduce the number of wavelengths (retaining half or fewer). Compared with the full-spectrum models, the present models not only simplified the model structures but improved the model performances. The performances were generally better than the ones by some popular and classic wavelength selection algorithms, such as competitive adaptive reweighted sampling, Monte Carlo uninformative variable elimination, variable importance in projection, interval partial least-squares, and successive projections algorithm.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on bionics-based swarm intelligence optimization algorithms for wavelength selection in near-infrared spectroscopy\",\"authors\":\"\",\"doi\":\"10.1016/j.infrared.2024.105594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wavelength selection is one of the most important steps in the modeling of near-infrared spectroscopy (NIRS), which is of great significance to reduce model complexity and improve model performance. In this paper, a total of ten bionics-based swarm intelligence optimization algorithms (BSIOAs) inspired by natural creatures, such as Harris Hawks Optimization (HHO), Butterfly Optimization Algorithm (BOA), Whale Optimization Algorithm (WOA), Monarch Butterfly Optimization (MBO), Grey Wolf Optimization (GWO), Fruit Fly Optimization Algorithm (FOA), Bat Algorithm (BA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) were studied on application to wavelength selection in the NIRS modeling. Three benchmark NIRS datasets were used to evaluate the algorithms by calculating the indicators, including coefficients of determination, root mean square error, and residual predictive deviation in calibration and prediction. The results obtained showed that these BSIOAs can significantly reduce the number of wavelengths (retaining half or fewer). Compared with the full-spectrum models, the present models not only simplified the model structures but improved the model performances. The performances were generally better than the ones by some popular and classic wavelength selection algorithms, such as competitive adaptive reweighted sampling, Monte Carlo uninformative variable elimination, variable importance in projection, interval partial least-squares, and successive projections algorithm.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135044952400478X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135044952400478X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Study on bionics-based swarm intelligence optimization algorithms for wavelength selection in near-infrared spectroscopy
Wavelength selection is one of the most important steps in the modeling of near-infrared spectroscopy (NIRS), which is of great significance to reduce model complexity and improve model performance. In this paper, a total of ten bionics-based swarm intelligence optimization algorithms (BSIOAs) inspired by natural creatures, such as Harris Hawks Optimization (HHO), Butterfly Optimization Algorithm (BOA), Whale Optimization Algorithm (WOA), Monarch Butterfly Optimization (MBO), Grey Wolf Optimization (GWO), Fruit Fly Optimization Algorithm (FOA), Bat Algorithm (BA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) were studied on application to wavelength selection in the NIRS modeling. Three benchmark NIRS datasets were used to evaluate the algorithms by calculating the indicators, including coefficients of determination, root mean square error, and residual predictive deviation in calibration and prediction. The results obtained showed that these BSIOAs can significantly reduce the number of wavelengths (retaining half or fewer). Compared with the full-spectrum models, the present models not only simplified the model structures but improved the model performances. The performances were generally better than the ones by some popular and classic wavelength selection algorithms, such as competitive adaptive reweighted sampling, Monte Carlo uninformative variable elimination, variable importance in projection, interval partial least-squares, and successive projections algorithm.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.