水下 PEMFC 应用中基于金属氢化物的储氢系统的建模和设计

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Berna Sezgin , Tayfur Ozturk , Inci Eroglu
{"title":"水下 PEMFC 应用中基于金属氢化物的储氢系统的建模和设计","authors":"Berna Sezgin ,&nbsp;Tayfur Ozturk ,&nbsp;Inci Eroglu","doi":"10.1016/j.materresbull.2024.113139","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing metal hydride materials presents a promising avenue for establishing a highly concentrated hydrogen medium suitable for onboard vehicle applications, including underwater contexts. This paper introduces a design solution devised to estimate the characteristics of a metal hydride-based hydrogen storage system tailored for underwater vehicle deployment. The solution facilitates sensitivity analysis across various parameters by offering system mass and volume estimations. The findings highlight the significance of thermodynamic properties and operational conditions in determining the suitability of metal hydrides for compact and efficient hydrogen storage. The study underscores the importance of refueling time, L/D ratio, cooling fluid temperature and velocity, and hydrogen storage capacity in influencing system mass, volume, and thermal management. The model provides insights into the design and optimization of metal hydride-based hydrogen storage systems, offering a comprehensive approach to enhancing performance and reliability for underwater applications.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113139"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and design for metal hydride-based hydrogen storage systems in underwater PEMFC applications\",\"authors\":\"Berna Sezgin ,&nbsp;Tayfur Ozturk ,&nbsp;Inci Eroglu\",\"doi\":\"10.1016/j.materresbull.2024.113139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Utilizing metal hydride materials presents a promising avenue for establishing a highly concentrated hydrogen medium suitable for onboard vehicle applications, including underwater contexts. This paper introduces a design solution devised to estimate the characteristics of a metal hydride-based hydrogen storage system tailored for underwater vehicle deployment. The solution facilitates sensitivity analysis across various parameters by offering system mass and volume estimations. The findings highlight the significance of thermodynamic properties and operational conditions in determining the suitability of metal hydrides for compact and efficient hydrogen storage. The study underscores the importance of refueling time, L/D ratio, cooling fluid temperature and velocity, and hydrogen storage capacity in influencing system mass, volume, and thermal management. The model provides insights into the design and optimization of metal hydride-based hydrogen storage systems, offering a comprehensive approach to enhancing performance and reliability for underwater applications.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"182 \",\"pages\":\"Article 113139\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540824004690\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004690","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用金属氢化物材料为建立适合车载应用(包括水下应用)的高浓度氢介质提供了一条大有可为的途径。本文介绍了一种设计方案,用于估算为水下车辆部署量身定制的金属氢化物储氢系统的特性。通过提供系统质量和体积估算,该解决方案有助于对各种参数进行敏感性分析。研究结果强调了热力学特性和操作条件在确定金属氢化物是否适合用于紧凑高效储氢方面的重要性。研究强调了加氢时间、长径比、冷却液温度和速度以及储氢容量在影响系统质量、体积和热管理方面的重要性。该模型为基于金属氢化物的储氢系统的设计和优化提供了见解,为提高水下应用的性能和可靠性提供了一种全面的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling and design for metal hydride-based hydrogen storage systems in underwater PEMFC applications

Modeling and design for metal hydride-based hydrogen storage systems in underwater PEMFC applications
Utilizing metal hydride materials presents a promising avenue for establishing a highly concentrated hydrogen medium suitable for onboard vehicle applications, including underwater contexts. This paper introduces a design solution devised to estimate the characteristics of a metal hydride-based hydrogen storage system tailored for underwater vehicle deployment. The solution facilitates sensitivity analysis across various parameters by offering system mass and volume estimations. The findings highlight the significance of thermodynamic properties and operational conditions in determining the suitability of metal hydrides for compact and efficient hydrogen storage. The study underscores the importance of refueling time, L/D ratio, cooling fluid temperature and velocity, and hydrogen storage capacity in influencing system mass, volume, and thermal management. The model provides insights into the design and optimization of metal hydride-based hydrogen storage systems, offering a comprehensive approach to enhancing performance and reliability for underwater applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信