{"title":"基于元模仿学习的自适应推荐环境模拟器:船货匹配案例研究","authors":"Guangyao Pang , Jiehang Xie , Fei Hao","doi":"10.1016/j.inffus.2024.102740","DOIUrl":null,"url":null,"abstract":"<div><div>High-quality shipping is one of the effective ways for sustainable cities in inland river basins to improve transportation efficiency and reduce energy consumption. Currently, the biggest challenge faced by shipping is the high empty-ship rate, which makes it impossible to directly apply machine learning methods due to the cold-start problem. Although some researchers have tried to utilize deep reinforcement learning(DRL)-based recommendation that do not rely on manually labeled data to alleviate the cold-start problem, progress has been slow due to the lack of available training environment. Therefore, this paper introduces an adaptive meta-imitation learning-based recommendation environment simulator, termed AMIL-Simulator. Specifically, we construct a conditionally guided diffusion model to simulate shipowner behavior in a dynamically changing environment. Moreover, we propose a shipowner reward model based on adaptive meta-imitation learning, enabling the learning of shipowner rewards across multiple tasks, even when confronted with limited samples and imbalanced categories. By conducting extensive quantitative experimental evaluations and shipowner-cargo matching studies, the results demonstrate the effectiveness of AMIL-Simulator, particularly in smaller-scale and cold-start environments.</div></div>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive meta-imitation learning-based recommendation environment simulator: A case study on ship-cargo matching\",\"authors\":\"Guangyao Pang , Jiehang Xie , Fei Hao\",\"doi\":\"10.1016/j.inffus.2024.102740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-quality shipping is one of the effective ways for sustainable cities in inland river basins to improve transportation efficiency and reduce energy consumption. Currently, the biggest challenge faced by shipping is the high empty-ship rate, which makes it impossible to directly apply machine learning methods due to the cold-start problem. Although some researchers have tried to utilize deep reinforcement learning(DRL)-based recommendation that do not rely on manually labeled data to alleviate the cold-start problem, progress has been slow due to the lack of available training environment. Therefore, this paper introduces an adaptive meta-imitation learning-based recommendation environment simulator, termed AMIL-Simulator. Specifically, we construct a conditionally guided diffusion model to simulate shipowner behavior in a dynamically changing environment. Moreover, we propose a shipowner reward model based on adaptive meta-imitation learning, enabling the learning of shipowner rewards across multiple tasks, even when confronted with limited samples and imbalanced categories. By conducting extensive quantitative experimental evaluations and shipowner-cargo matching studies, the results demonstrate the effectiveness of AMIL-Simulator, particularly in smaller-scale and cold-start environments.</div></div>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524005189\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524005189","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
An adaptive meta-imitation learning-based recommendation environment simulator: A case study on ship-cargo matching
High-quality shipping is one of the effective ways for sustainable cities in inland river basins to improve transportation efficiency and reduce energy consumption. Currently, the biggest challenge faced by shipping is the high empty-ship rate, which makes it impossible to directly apply machine learning methods due to the cold-start problem. Although some researchers have tried to utilize deep reinforcement learning(DRL)-based recommendation that do not rely on manually labeled data to alleviate the cold-start problem, progress has been slow due to the lack of available training environment. Therefore, this paper introduces an adaptive meta-imitation learning-based recommendation environment simulator, termed AMIL-Simulator. Specifically, we construct a conditionally guided diffusion model to simulate shipowner behavior in a dynamically changing environment. Moreover, we propose a shipowner reward model based on adaptive meta-imitation learning, enabling the learning of shipowner rewards across multiple tasks, even when confronted with limited samples and imbalanced categories. By conducting extensive quantitative experimental evaluations and shipowner-cargo matching studies, the results demonstrate the effectiveness of AMIL-Simulator, particularly in smaller-scale and cold-start environments.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.