{"title":"针对二维奇异扰动四阶问题的 Shishkin 网格弱 Galerkin 有限元方法的收敛性分析","authors":"Shicheng Liu , Xiangyun Meng , Qilong Zhai","doi":"10.1016/j.cam.2024.116324","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we apply the weak Galerkin (WG) finite element method to solve the singularly perturbed fourth-order boundary value problem in a 2D domain. A Shishkin mesh is used to ensure that the method exhibits uniform convergence, regardless of the singular perturbation parameter. Asymptotically optimal order error estimate in a <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> discrete norm is established for the corresponding WG solutions. Numerical tests are provided to verify the convergence theory.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of a weak Galerkin finite element method on a Shishkin mesh for a singularly perturbed fourth-order problem in 2D\",\"authors\":\"Shicheng Liu , Xiangyun Meng , Qilong Zhai\",\"doi\":\"10.1016/j.cam.2024.116324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we apply the weak Galerkin (WG) finite element method to solve the singularly perturbed fourth-order boundary value problem in a 2D domain. A Shishkin mesh is used to ensure that the method exhibits uniform convergence, regardless of the singular perturbation parameter. Asymptotically optimal order error estimate in a <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> discrete norm is established for the corresponding WG solutions. Numerical tests are provided to verify the convergence theory.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文采用弱 Galerkin(WG)有限元法求解二维域中的奇异扰动四阶边界值问题。我们使用 Shishkin 网格来确保该方法表现出均匀的收敛性,而不受奇异扰动参数的影响。为相应的 WG 解建立了 H2 离散规范下的渐近最优阶误差估计。提供了数值测试来验证收敛理论。
Convergence analysis of a weak Galerkin finite element method on a Shishkin mesh for a singularly perturbed fourth-order problem in 2D
In this paper, we apply the weak Galerkin (WG) finite element method to solve the singularly perturbed fourth-order boundary value problem in a 2D domain. A Shishkin mesh is used to ensure that the method exhibits uniform convergence, regardless of the singular perturbation parameter. Asymptotically optimal order error estimate in a discrete norm is established for the corresponding WG solutions. Numerical tests are provided to verify the convergence theory.