José A. Ferreira , Mario Grassi , Elías Gudiño , Paula de Oliveira
{"title":"温度增强的非费克式扩散","authors":"José A. Ferreira , Mario Grassi , Elías Gudiño , Paula de Oliveira","doi":"10.1016/j.cam.2024.116314","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we present a novel mathematical model to describe the permeation of a fluid through a polymeric matrix, loaded with drug molecules, followed by its subsequent desorption. Both phenomena are enhanced by temperature. We deduce energy estimates and stability estimates for the weak solution of the model, showing that this solution of the problem is stable in bounded time intervals. Numerical simulations illustrate how the coupling effects, of viscoelastic properties and thermal external assistance, can have a central role in the design of drug delivery devices.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Fickian diffusion enhanced by temperature\",\"authors\":\"José A. Ferreira , Mario Grassi , Elías Gudiño , Paula de Oliveira\",\"doi\":\"10.1016/j.cam.2024.116314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we present a novel mathematical model to describe the permeation of a fluid through a polymeric matrix, loaded with drug molecules, followed by its subsequent desorption. Both phenomena are enhanced by temperature. We deduce energy estimates and stability estimates for the weak solution of the model, showing that this solution of the problem is stable in bounded time intervals. Numerical simulations illustrate how the coupling effects, of viscoelastic properties and thermal external assistance, can have a central role in the design of drug delivery devices.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In this paper we present a novel mathematical model to describe the permeation of a fluid through a polymeric matrix, loaded with drug molecules, followed by its subsequent desorption. Both phenomena are enhanced by temperature. We deduce energy estimates and stability estimates for the weak solution of the model, showing that this solution of the problem is stable in bounded time intervals. Numerical simulations illustrate how the coupling effects, of viscoelastic properties and thermal external assistance, can have a central role in the design of drug delivery devices.