Greg Lackey , Scott Pantaleone , John K. Montgomery , Kristen Busse , Adam W. Aylor , Tracy J. Moffett
{"title":"评估用于地质碳封存的近海遗留井:墨西哥湾加尔维斯顿和布拉索斯地区案例研究","authors":"Greg Lackey , Scott Pantaleone , John K. Montgomery , Kristen Busse , Adam W. Aylor , Tracy J. Moffett","doi":"10.1016/j.ijggc.2024.104276","DOIUrl":null,"url":null,"abstract":"<div><div>Federal offshore waters in the Gulf of Mexico are of interest for large-scale geologic carbon storage (GCS). However, more than 80,000 offshore oil and gas wells exist in the region, which could impact the integrity of sealing intervals. In this study, we propose a screening methodology for ranking offshore legacy wells based on the challenge they may present to GCS. The methodology relies on the review of well regulatory records to 1) identify leakage pathways and assess the potential hazards that wells pose to planned GCS operations, 2) evaluate well features that impact the accessibility of wells to determine the feasibility of potential corrective actions, and 3) rank wells based on the overall challenge they may pose for GCS. We demonstrate our framework by evaluating the construction and abandonment of 156 wells across eight areas of interest (AOIs) in shallow federal waters along the Texas Gulf Coast. The majority (99.3 %) of wells considered were constructed and plugged in a manner that did not isolate prospective GCS targets in the Upper and Lower Miocene formations and may potentially require a challenging or uncertain corrective action prior to GCS. Dataset trends suggest that the observed well construction and plugging designs may be common in shallow offshore federal waters along the Texas Gulf Coast. Consequently, operators pursuing offshore GCS projects in the region may consider selecting areas that avoid challenging wells or performing robust evaluations of legacy well leakage risks to plan corrective action prior to CO<sub>2</sub> injection.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"139 ","pages":"Article 104276"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating offshore legacy wells for geologic carbon storage: A case study from the Galveston and Brazos areas in the Gulf of Mexico\",\"authors\":\"Greg Lackey , Scott Pantaleone , John K. Montgomery , Kristen Busse , Adam W. Aylor , Tracy J. Moffett\",\"doi\":\"10.1016/j.ijggc.2024.104276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federal offshore waters in the Gulf of Mexico are of interest for large-scale geologic carbon storage (GCS). However, more than 80,000 offshore oil and gas wells exist in the region, which could impact the integrity of sealing intervals. In this study, we propose a screening methodology for ranking offshore legacy wells based on the challenge they may present to GCS. The methodology relies on the review of well regulatory records to 1) identify leakage pathways and assess the potential hazards that wells pose to planned GCS operations, 2) evaluate well features that impact the accessibility of wells to determine the feasibility of potential corrective actions, and 3) rank wells based on the overall challenge they may pose for GCS. We demonstrate our framework by evaluating the construction and abandonment of 156 wells across eight areas of interest (AOIs) in shallow federal waters along the Texas Gulf Coast. The majority (99.3 %) of wells considered were constructed and plugged in a manner that did not isolate prospective GCS targets in the Upper and Lower Miocene formations and may potentially require a challenging or uncertain corrective action prior to GCS. Dataset trends suggest that the observed well construction and plugging designs may be common in shallow offshore federal waters along the Texas Gulf Coast. Consequently, operators pursuing offshore GCS projects in the region may consider selecting areas that avoid challenging wells or performing robust evaluations of legacy well leakage risks to plan corrective action prior to CO<sub>2</sub> injection.</div></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"139 \",\"pages\":\"Article 104276\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624002196\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624002196","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evaluating offshore legacy wells for geologic carbon storage: A case study from the Galveston and Brazos areas in the Gulf of Mexico
Federal offshore waters in the Gulf of Mexico are of interest for large-scale geologic carbon storage (GCS). However, more than 80,000 offshore oil and gas wells exist in the region, which could impact the integrity of sealing intervals. In this study, we propose a screening methodology for ranking offshore legacy wells based on the challenge they may present to GCS. The methodology relies on the review of well regulatory records to 1) identify leakage pathways and assess the potential hazards that wells pose to planned GCS operations, 2) evaluate well features that impact the accessibility of wells to determine the feasibility of potential corrective actions, and 3) rank wells based on the overall challenge they may pose for GCS. We demonstrate our framework by evaluating the construction and abandonment of 156 wells across eight areas of interest (AOIs) in shallow federal waters along the Texas Gulf Coast. The majority (99.3 %) of wells considered were constructed and plugged in a manner that did not isolate prospective GCS targets in the Upper and Lower Miocene formations and may potentially require a challenging or uncertain corrective action prior to GCS. Dataset trends suggest that the observed well construction and plugging designs may be common in shallow offshore federal waters along the Texas Gulf Coast. Consequently, operators pursuing offshore GCS projects in the region may consider selecting areas that avoid challenging wells or performing robust evaluations of legacy well leakage risks to plan corrective action prior to CO2 injection.
期刊介绍:
The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.