{"title":"基于氢键有机框架的新型下水道油脂沉积控制涂层","authors":"Sachin Yadav, Anika Amir Mohana, Sagor Kumar Pramanik, Biplob Kumar Pramanik","doi":"10.1016/j.porgcoat.2024.108867","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen-bonded organic frameworks (HOFs) represent an emerging class of porous materials characterized by crystalline frame structures, self-assembled from organic molecules through hydrogen bonding. This study demonstrates that HOFs fragment into small particles while preserving their original structure when dispersed in a polymeric epoxy solution. The intermolecular hydrogen bond structural and electronic properties of the LH<sub>4</sub>-HOF complex as well as the mechanism of HOF incorporated epoxy were extensively studied using density functional theory. LH<sub>4</sub>-HOF has a high Langmuir surface area of 2758.3 m<sup>2</sup>/g and nonlocal density functional theory pore size distributions of 3 A°. This unique solution processability enables the fabrication of coatings with high stability in aqueous systems. Results from a 30-day leaching test under controlled conditions (pH 7, temperature 20 ± 2 °C) indicate that LH<sub>4</sub>-HOF incorporated epoxy-coated concrete samples exhibited an over 85 % reduction in calcium release compared to uncoated samples, with epoxy-coated samples alone showing a 60 % reduction in calcium leaching. Additionally, the LH<sub>4</sub>-HOF-incorporated epoxy coating reduced the formation of fats, oils and grease deposits by more than 73 % on the concrete samples. Thus, this novel coating approach offers a sustainable solution with significant potential applications in sewer management.</div></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":"197 ","pages":"Article 108867"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel hydrogen-bonded organic frameworks-based coating for fat oil and grease deposition control in the sewer system\",\"authors\":\"Sachin Yadav, Anika Amir Mohana, Sagor Kumar Pramanik, Biplob Kumar Pramanik\",\"doi\":\"10.1016/j.porgcoat.2024.108867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen-bonded organic frameworks (HOFs) represent an emerging class of porous materials characterized by crystalline frame structures, self-assembled from organic molecules through hydrogen bonding. This study demonstrates that HOFs fragment into small particles while preserving their original structure when dispersed in a polymeric epoxy solution. The intermolecular hydrogen bond structural and electronic properties of the LH<sub>4</sub>-HOF complex as well as the mechanism of HOF incorporated epoxy were extensively studied using density functional theory. LH<sub>4</sub>-HOF has a high Langmuir surface area of 2758.3 m<sup>2</sup>/g and nonlocal density functional theory pore size distributions of 3 A°. This unique solution processability enables the fabrication of coatings with high stability in aqueous systems. Results from a 30-day leaching test under controlled conditions (pH 7, temperature 20 ± 2 °C) indicate that LH<sub>4</sub>-HOF incorporated epoxy-coated concrete samples exhibited an over 85 % reduction in calcium release compared to uncoated samples, with epoxy-coated samples alone showing a 60 % reduction in calcium leaching. Additionally, the LH<sub>4</sub>-HOF-incorporated epoxy coating reduced the formation of fats, oils and grease deposits by more than 73 % on the concrete samples. Thus, this novel coating approach offers a sustainable solution with significant potential applications in sewer management.</div></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":\"197 \",\"pages\":\"Article 108867\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024006593\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006593","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Novel hydrogen-bonded organic frameworks-based coating for fat oil and grease deposition control in the sewer system
Hydrogen-bonded organic frameworks (HOFs) represent an emerging class of porous materials characterized by crystalline frame structures, self-assembled from organic molecules through hydrogen bonding. This study demonstrates that HOFs fragment into small particles while preserving their original structure when dispersed in a polymeric epoxy solution. The intermolecular hydrogen bond structural and electronic properties of the LH4-HOF complex as well as the mechanism of HOF incorporated epoxy were extensively studied using density functional theory. LH4-HOF has a high Langmuir surface area of 2758.3 m2/g and nonlocal density functional theory pore size distributions of 3 A°. This unique solution processability enables the fabrication of coatings with high stability in aqueous systems. Results from a 30-day leaching test under controlled conditions (pH 7, temperature 20 ± 2 °C) indicate that LH4-HOF incorporated epoxy-coated concrete samples exhibited an over 85 % reduction in calcium release compared to uncoated samples, with epoxy-coated samples alone showing a 60 % reduction in calcium leaching. Additionally, the LH4-HOF-incorporated epoxy coating reduced the formation of fats, oils and grease deposits by more than 73 % on the concrete samples. Thus, this novel coating approach offers a sustainable solution with significant potential applications in sewer management.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.