磁性磨料精加工过程中自由形状表面材料去除机理建模

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Pengfei Chen , Yuewu Gao , Guoyong Zhao , Yugang Zhao , Guiguan Zhang , Yang Yang
{"title":"磁性磨料精加工过程中自由形状表面材料去除机理建模","authors":"Pengfei Chen ,&nbsp;Yuewu Gao ,&nbsp;Guoyong Zhao ,&nbsp;Yugang Zhao ,&nbsp;Guiguan Zhang ,&nbsp;Yang Yang","doi":"10.1016/j.precisioneng.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Knee prosthesis is a common metal implant in the medical field. However, the complex curvature expression of its surface often hinders its further precision machining. Through the simulation software Ansys Maxwell, the influence of curvature on the distribution of magnetic field generator on the free surface was determined. In this work, spherical diamond magnetic abrasives were used as a grinding tool to polish the multi-curvature knee prosthesis. Different morphologies were formed on the surface of titanium alloy prosthesis after polishing. The depth of scratches under different morphologies was studied by 3D digital microscope. The results showed that the different degrees of scratches on surface of titanium alloy knee prosthesis were caused by different curvature of each position. The process parameters such as rotational speed, working gap and magnetic abrasive powders (MAP) size also affected the scratch depth. The polishing mechanism of magnetic abrasive finishing (MAF) on the surface of Ti-6Al-4V alloy knee prosthesis was studied. Based on the experimental data and simulation results, a theoretical model considering the influence of workpiece surface curvature, magnetic pole speed, machining gap and abrasive powders size on the process results of free-form surface material removal based on spherical diamond abrasives was established. Comparing the experimental data with the model results, the prediction model was consistent with the experimental data and can accurately predict the material removal rate of the MAF process. The model can deeply understand the machining mechanism of MAF process on free complex surfaces and the influence of curvature on its material removal rate.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 507-521"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of material removal mechanism on free-form surface in magnetic abrasive finishing process\",\"authors\":\"Pengfei Chen ,&nbsp;Yuewu Gao ,&nbsp;Guoyong Zhao ,&nbsp;Yugang Zhao ,&nbsp;Guiguan Zhang ,&nbsp;Yang Yang\",\"doi\":\"10.1016/j.precisioneng.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Knee prosthesis is a common metal implant in the medical field. However, the complex curvature expression of its surface often hinders its further precision machining. Through the simulation software Ansys Maxwell, the influence of curvature on the distribution of magnetic field generator on the free surface was determined. In this work, spherical diamond magnetic abrasives were used as a grinding tool to polish the multi-curvature knee prosthesis. Different morphologies were formed on the surface of titanium alloy prosthesis after polishing. The depth of scratches under different morphologies was studied by 3D digital microscope. The results showed that the different degrees of scratches on surface of titanium alloy knee prosthesis were caused by different curvature of each position. The process parameters such as rotational speed, working gap and magnetic abrasive powders (MAP) size also affected the scratch depth. The polishing mechanism of magnetic abrasive finishing (MAF) on the surface of Ti-6Al-4V alloy knee prosthesis was studied. Based on the experimental data and simulation results, a theoretical model considering the influence of workpiece surface curvature, magnetic pole speed, machining gap and abrasive powders size on the process results of free-form surface material removal based on spherical diamond abrasives was established. Comparing the experimental data with the model results, the prediction model was consistent with the experimental data and can accurately predict the material removal rate of the MAF process. The model can deeply understand the machining mechanism of MAF process on free complex surfaces and the influence of curvature on its material removal rate.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 507-521\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002381\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002381","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

膝关节假体是医疗领域常见的金属植入物。然而,其表面复杂的曲率表现往往会阻碍其进一步的精密加工。通过仿真软件 Ansys Maxwell,确定了曲率对自由表面磁场发生器分布的影响。在这项工作中,使用球形金刚石磁性磨料作为研磨工具来抛光多曲率膝关节假体。抛光后,钛合金假体表面形成了不同的形态。通过三维数码显微镜研究了不同形态下的划痕深度。结果表明,钛合金膝关节假体表面不同程度的划痕是由各个位置的曲率不同造成的。转速、工作间隙和磁性研磨粉(MAP)尺寸等工艺参数也影响了划痕深度。研究了磁性磨料精加工(MAF)对 Ti-6Al-4V 合金膝关节假体表面的抛光机理。基于实验数据和模拟结果,建立了一个理论模型,考虑了工件表面曲率、磁极速度、加工间隙和磨料粉末尺寸对基于球形金刚石磨料的自由形状表面材料去除工艺结果的影响。对比实验数据和模型结果,预测模型与实验数据一致,能准确预测 MAF 工艺的材料去除率。该模型可以深入理解 MAF 工艺对自由复杂表面的加工机理以及曲率对其材料去除率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of material removal mechanism on free-form surface in magnetic abrasive finishing process
Knee prosthesis is a common metal implant in the medical field. However, the complex curvature expression of its surface often hinders its further precision machining. Through the simulation software Ansys Maxwell, the influence of curvature on the distribution of magnetic field generator on the free surface was determined. In this work, spherical diamond magnetic abrasives were used as a grinding tool to polish the multi-curvature knee prosthesis. Different morphologies were formed on the surface of titanium alloy prosthesis after polishing. The depth of scratches under different morphologies was studied by 3D digital microscope. The results showed that the different degrees of scratches on surface of titanium alloy knee prosthesis were caused by different curvature of each position. The process parameters such as rotational speed, working gap and magnetic abrasive powders (MAP) size also affected the scratch depth. The polishing mechanism of magnetic abrasive finishing (MAF) on the surface of Ti-6Al-4V alloy knee prosthesis was studied. Based on the experimental data and simulation results, a theoretical model considering the influence of workpiece surface curvature, magnetic pole speed, machining gap and abrasive powders size on the process results of free-form surface material removal based on spherical diamond abrasives was established. Comparing the experimental data with the model results, the prediction model was consistent with the experimental data and can accurately predict the material removal rate of the MAF process. The model can deeply understand the machining mechanism of MAF process on free complex surfaces and the influence of curvature on its material removal rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信