预测椭圆喷嘴气体喷射成形镜坯表面形状变化的进展

IF 3.5 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Weijie Fu , Xiangyv Shen , Xinming Zhang
{"title":"预测椭圆喷嘴气体喷射成形镜坯表面形状变化的进展","authors":"Weijie Fu ,&nbsp;Xiangyv Shen ,&nbsp;Xinming Zhang","doi":"10.1016/j.precisioneng.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>To facilitate the formation of bifocal aspheric optical surfaces, we present an approach for predicting the surface profile of bifocal aspheric surfaces formed by the gas-liquid interface when an elliptical nozzle gas jet is employed. Through an analysis of the gas flow field morphology emanating from the elliptical nozzle, we inferred the impact of gas jet parameters on the gas-liquid interface surface shape within the core region of the gas jet. By analyzing the variation in the gas flow field morphology emitted from an elliptical nozzle, we deduced the influence patterns of gas jet parameters on the gas-liquid interface surface shape within the gas jet's core region. Theoretical analysis is substantiated by numerical simulations, confirming regular changes in the vertex curvature and conic constant of mirror blanks concerning variations in jet initial velocity and nozzle aspect ratio. A comparison between experimental data and numerical simulation results reveals an average prediction deviation of 0.0083 mm<sup>−1</sup> for the vertex curvature and a prediction deviation of 10.7 % for the conic constant, challenging to rectify within numerical simulations. Hence, an empirical model, incorporating jet parameters, is developed based on experimental data to predict the vertex curvature and conic constant of mirror blanks. This model demonstrates an average prediction error of 2.901 × 10<sup>−3</sup> mm<sup>−1</sup> for the vertex curvature and 7.64 % for the conic constant, surpassing the predictive accuracy of the numerical simulation model.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 451-461"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in predicting surface shape changes of mirror blanks through elliptical nozzle gas jet forming\",\"authors\":\"Weijie Fu ,&nbsp;Xiangyv Shen ,&nbsp;Xinming Zhang\",\"doi\":\"10.1016/j.precisioneng.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To facilitate the formation of bifocal aspheric optical surfaces, we present an approach for predicting the surface profile of bifocal aspheric surfaces formed by the gas-liquid interface when an elliptical nozzle gas jet is employed. Through an analysis of the gas flow field morphology emanating from the elliptical nozzle, we inferred the impact of gas jet parameters on the gas-liquid interface surface shape within the core region of the gas jet. By analyzing the variation in the gas flow field morphology emitted from an elliptical nozzle, we deduced the influence patterns of gas jet parameters on the gas-liquid interface surface shape within the gas jet's core region. Theoretical analysis is substantiated by numerical simulations, confirming regular changes in the vertex curvature and conic constant of mirror blanks concerning variations in jet initial velocity and nozzle aspect ratio. A comparison between experimental data and numerical simulation results reveals an average prediction deviation of 0.0083 mm<sup>−1</sup> for the vertex curvature and a prediction deviation of 10.7 % for the conic constant, challenging to rectify within numerical simulations. Hence, an empirical model, incorporating jet parameters, is developed based on experimental data to predict the vertex curvature and conic constant of mirror blanks. This model demonstrates an average prediction error of 2.901 × 10<sup>−3</sup> mm<sup>−1</sup> for the vertex curvature and 7.64 % for the conic constant, surpassing the predictive accuracy of the numerical simulation model.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 451-461\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002344\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002344","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

为了促进双焦点非球面光学表面的形成,我们提出了一种方法,用于预测采用椭圆喷嘴气体射流时气液界面形成的双焦点非球面的表面轮廓。通过分析从椭圆喷嘴喷出的气体流场形态,我们推断出气体射流参数对气体射流核心区域内气液界面表面形状的影响。通过分析从椭圆喷嘴喷出的气体流场形态的变化,我们推断出气体射流参数对气体射流核心区域内气液界面表面形状的影响模式。数值模拟证实了理论分析的正确性,并证实了镜面坯料的顶点曲率和圆锥常数随射流初速度和喷嘴长宽比的变化而发生的规律性变化。实验数据与数值模拟结果的比较显示,顶点曲率的平均预测偏差为 0.0083 mm-1,圆锥常数的预测偏差为 10.7%,这对数值模拟的纠正工作提出了挑战。因此,我们根据实验数据建立了一个包含喷射参数的经验模型,用于预测镜面坯料的顶点曲率和圆锥常数。该模型显示,顶点曲率的平均预测误差为 2.901 × 10-3 mm-1,圆锥常数的平均预测误差为 7.64%,超过了数值模拟模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in predicting surface shape changes of mirror blanks through elliptical nozzle gas jet forming
To facilitate the formation of bifocal aspheric optical surfaces, we present an approach for predicting the surface profile of bifocal aspheric surfaces formed by the gas-liquid interface when an elliptical nozzle gas jet is employed. Through an analysis of the gas flow field morphology emanating from the elliptical nozzle, we inferred the impact of gas jet parameters on the gas-liquid interface surface shape within the core region of the gas jet. By analyzing the variation in the gas flow field morphology emitted from an elliptical nozzle, we deduced the influence patterns of gas jet parameters on the gas-liquid interface surface shape within the gas jet's core region. Theoretical analysis is substantiated by numerical simulations, confirming regular changes in the vertex curvature and conic constant of mirror blanks concerning variations in jet initial velocity and nozzle aspect ratio. A comparison between experimental data and numerical simulation results reveals an average prediction deviation of 0.0083 mm−1 for the vertex curvature and a prediction deviation of 10.7 % for the conic constant, challenging to rectify within numerical simulations. Hence, an empirical model, incorporating jet parameters, is developed based on experimental data to predict the vertex curvature and conic constant of mirror blanks. This model demonstrates an average prediction error of 2.901 × 10−3 mm−1 for the vertex curvature and 7.64 % for the conic constant, surpassing the predictive accuracy of the numerical simulation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
5.60%
发文量
177
审稿时长
46 days
期刊介绍: Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信