Kanhaiya Saini , Reetu Sharma , Amit Kumar Sharma , Balaram Pani , Anjana Sarkar
{"title":"为高效电催化和光催化应用定制 α-MoO3 异质纳米结构的探索","authors":"Kanhaiya Saini , Reetu Sharma , Amit Kumar Sharma , Balaram Pani , Anjana Sarkar","doi":"10.1016/j.cattod.2024.115092","DOIUrl":null,"url":null,"abstract":"<div><div>The primary focus of this review is the wide range of techniques available for generating α-MoO<sub>3</sub> nanostructures. Some examples of these processes are hydrothermal method, solvothermal method, sol-gel methods, spray pyrolysis chemical, thermal evaporation, and own heterostructures. The various crystal and electronic structures of α-MoO<sub>3</sub> offer a wealth of possibilities for the discovery of electrocatalysts that are suited for the creation of hydrogen through the splitting of water molecules. The orthorhombic form of α-MoO<sub>3</sub> has showed potential electrocatalytic activity for the hydrogen evolution reaction (HER), while the polymorph has shown poor oxygen evolution reaction (OER) activity. This is the case even though both forms have been investigated. The as-prepared nanostructures were found to be effective photocatalysts for the breakdown of acridine orange when exposed to ultraviolet light. A high photocatalytic property was shown by the generated mixed morphology, which consisted of hexagonal nanoplatelets and nano bars, in order to breakdown the carcinogenic Acridine Orange dye. In addition, as a result of their 1-Dimensional and 2-Dimensional nanostructure feature, they are capable of being recycled with relative ease while maintaining their photocatalytic activity. In order to highlight the potential of α-MoO<sub>3</sub> heterogeneous nanostructures for electrocatalytic and photocatalytic processes like CO<sub>2</sub> reduction, hydrogen evolution, and pollutant degradation, this review will analyze and summarize recent developments in these areas. Also covered in this article are number of contemporary difficulties as well as prospective research directions based on α-MoO<sub>3</sub> nanostructures.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115092"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploration of tailoring of hetero-nanostructures of α-MoO3 for efficient electrocatalytic and photocatalytic applications\",\"authors\":\"Kanhaiya Saini , Reetu Sharma , Amit Kumar Sharma , Balaram Pani , Anjana Sarkar\",\"doi\":\"10.1016/j.cattod.2024.115092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary focus of this review is the wide range of techniques available for generating α-MoO<sub>3</sub> nanostructures. Some examples of these processes are hydrothermal method, solvothermal method, sol-gel methods, spray pyrolysis chemical, thermal evaporation, and own heterostructures. The various crystal and electronic structures of α-MoO<sub>3</sub> offer a wealth of possibilities for the discovery of electrocatalysts that are suited for the creation of hydrogen through the splitting of water molecules. The orthorhombic form of α-MoO<sub>3</sub> has showed potential electrocatalytic activity for the hydrogen evolution reaction (HER), while the polymorph has shown poor oxygen evolution reaction (OER) activity. This is the case even though both forms have been investigated. The as-prepared nanostructures were found to be effective photocatalysts for the breakdown of acridine orange when exposed to ultraviolet light. A high photocatalytic property was shown by the generated mixed morphology, which consisted of hexagonal nanoplatelets and nano bars, in order to breakdown the carcinogenic Acridine Orange dye. In addition, as a result of their 1-Dimensional and 2-Dimensional nanostructure feature, they are capable of being recycled with relative ease while maintaining their photocatalytic activity. In order to highlight the potential of α-MoO<sub>3</sub> heterogeneous nanostructures for electrocatalytic and photocatalytic processes like CO<sub>2</sub> reduction, hydrogen evolution, and pollutant degradation, this review will analyze and summarize recent developments in these areas. Also covered in this article are number of contemporary difficulties as well as prospective research directions based on α-MoO<sub>3</sub> nanostructures.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"445 \",\"pages\":\"Article 115092\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124005868\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005868","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
An exploration of tailoring of hetero-nanostructures of α-MoO3 for efficient electrocatalytic and photocatalytic applications
The primary focus of this review is the wide range of techniques available for generating α-MoO3 nanostructures. Some examples of these processes are hydrothermal method, solvothermal method, sol-gel methods, spray pyrolysis chemical, thermal evaporation, and own heterostructures. The various crystal and electronic structures of α-MoO3 offer a wealth of possibilities for the discovery of electrocatalysts that are suited for the creation of hydrogen through the splitting of water molecules. The orthorhombic form of α-MoO3 has showed potential electrocatalytic activity for the hydrogen evolution reaction (HER), while the polymorph has shown poor oxygen evolution reaction (OER) activity. This is the case even though both forms have been investigated. The as-prepared nanostructures were found to be effective photocatalysts for the breakdown of acridine orange when exposed to ultraviolet light. A high photocatalytic property was shown by the generated mixed morphology, which consisted of hexagonal nanoplatelets and nano bars, in order to breakdown the carcinogenic Acridine Orange dye. In addition, as a result of their 1-Dimensional and 2-Dimensional nanostructure feature, they are capable of being recycled with relative ease while maintaining their photocatalytic activity. In order to highlight the potential of α-MoO3 heterogeneous nanostructures for electrocatalytic and photocatalytic processes like CO2 reduction, hydrogen evolution, and pollutant degradation, this review will analyze and summarize recent developments in these areas. Also covered in this article are number of contemporary difficulties as well as prospective research directions based on α-MoO3 nanostructures.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.