一类双次线性加德纳方程中的紧凑子

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"一类双次线性加德纳方程中的紧凑子","authors":"","doi":"10.1016/j.wavemoti.2024.103427","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce and study a class of doubly sublinear Gardner equations <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>F</mi><msub><mrow><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mi>x</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></math></span>, which for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>n</mi></mrow></math></span> induce solitons and in the doubly sublinear cases wherein <span><math><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, <em>bi-directional</em> compactons propagating in either direction. Their emergence, evolution, chase and head-on interactions are studied.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactons in a class of doubly sublinear Gardner equations\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce and study a class of doubly sublinear Gardner equations <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>F</mi><msub><mrow><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>3</mn><mi>x</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span> where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>;</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>n</mi></mrow></msup><mo>−</mo><msub><mrow><mi>κ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>+</mo><mn>2</mn><mi>n</mi></mrow></msup></mrow></math></span>, which for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>n</mi></mrow></math></span> induce solitons and in the doubly sublinear cases wherein <span><math><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>, <em>bi-directional</em> compactons propagating in either direction. Their emergence, evolution, chase and head-on interactions are studied.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001574\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001574","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入并研究了一类双亚线性加德纳方程ut+F(u;n)x+u3x=0,其中F(u;n)=u1+n-κ1+2nu1+2n,这些方程在0<n时会诱发孤子,在-1/2<n<0的双亚线性情况下,会诱发向任一方向传播的双向紧凑子。对它们的出现、演变、追逐和迎面相互作用进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactons in a class of doubly sublinear Gardner equations
We introduce and study a class of doubly sublinear Gardner equations ut+F(u;n)x+u3x=0 where F(u;n)=u1+nκ1+2nu1+2n, which for 0<n induce solitons and in the doubly sublinear cases wherein 1/2<n<0, bi-directional compactons propagating in either direction. Their emergence, evolution, chase and head-on interactions are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信