{"title":"加强依西美坦的给药:固体脂质纳米颗粒配方和药代动力学评估","authors":"Bhupendra G. Prajapati , Payal Patel , Himanshu Paliwal , Dignesh Khunt","doi":"10.1016/j.nanoso.2024.101388","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101388"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation\",\"authors\":\"Bhupendra G. Prajapati , Payal Patel , Himanshu Paliwal , Dignesh Khunt\",\"doi\":\"10.1016/j.nanoso.2024.101388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101388\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24003007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Enhancing exemestane delivery: Solid lipid nanoparticles formulation and pharmacokinetic evaluation
This research investigates the development of exemestane (EXM) solid lipid nanoparticles (SLNs) for the purpose of improving drug delivery. To prepare EXM SLNs, glycerol monostearate was used as the lipid and Tween 80 as the surfactant and solvent injection followed by high-pressure homogenization as a method of preparation. The formulation parameters were optimized, leading to the development of a promising formula. The formula has a particle size of 188.72 ± 5.62 nm, a polydispersity index (PDI) of 0.215 ± 0.023, and an %EE of 65.39 ± 2.54 %. The formulation's robustness was indicated by minimal changes in particle size and %EE over 30 days, as revealed by stability studies. The bioavailability of EXM SLNs was found to be significantly improved in Wistar rats compared to conventional EXM suspension, as shown by pharmacokinetic studies. The formula that was optimized showed a higher maximum plasma concentration (Cmax) of 168.92 ± 2.40 ng/mL, a delayed time to reach Cmax (Tmax) of 4 hours, and significantly higher area under the curve (AUC) values. These results highlight the effectiveness of the optimized formula in improving drug absorption and bioavailability. The findings indicate that EXM SLNs show potential for enhancing the delivery and effectiveness of EXM, specifically in the treatment of breast cancer.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .