原位构建多尺度多孔镍铁锌/镍锌镍异质结,实现优异的整体水分离性能

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Ya-xin LI , Hong-xiao YANG , Qiu-ping ZHANG , Tian-zhen JIAN , Wen-qing MA , Cai-xia XU , Qiu-xia ZHOU
{"title":"原位构建多尺度多孔镍铁锌/镍锌镍异质结,实现优异的整体水分离性能","authors":"Ya-xin LI ,&nbsp;Hong-xiao YANG ,&nbsp;Qiu-ping ZHANG ,&nbsp;Tian-zhen JIAN ,&nbsp;Wen-qing MA ,&nbsp;Cai-xia XU ,&nbsp;Qiu-xia ZHOU","doi":"10.1016/S1003-6326(24)66589-1","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). A self-supporting, multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam (NF) (NiFeZn/NiZn-Ni/NF) was in-situ fabricated using an electroplating−annealing−etching strategy. The unique multi- interface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction, resulting in superior bifunctional electrocatalytic performance for water splitting. The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 mV for HER and 320 mV for OER at a current density of 600 mA/cm², along with high durability over 150 h in alkaline solution. Furthermore, an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 mA/cm<sup>2</sup> at cell voltages of 1.796 and 1.901 V, respectively, maintaining the high stability at 50 mA/cm<sup>2</sup> for over 100 h. These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 9","pages":"Pages 2972-2986"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ building of multiscale porous NiFeZn/NiZn-Ni heterojunction for superior overall water splitting\",\"authors\":\"Ya-xin LI ,&nbsp;Hong-xiao YANG ,&nbsp;Qiu-ping ZHANG ,&nbsp;Tian-zhen JIAN ,&nbsp;Wen-qing MA ,&nbsp;Cai-xia XU ,&nbsp;Qiu-xia ZHOU\",\"doi\":\"10.1016/S1003-6326(24)66589-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). A self-supporting, multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam (NF) (NiFeZn/NiZn-Ni/NF) was in-situ fabricated using an electroplating−annealing−etching strategy. The unique multi- interface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction, resulting in superior bifunctional electrocatalytic performance for water splitting. The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 mV for HER and 320 mV for OER at a current density of 600 mA/cm², along with high durability over 150 h in alkaline solution. Furthermore, an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 mA/cm<sup>2</sup> at cell voltages of 1.796 and 1.901 V, respectively, maintaining the high stability at 50 mA/cm<sup>2</sup> for over 100 h. These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.</div></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 9\",\"pages\":\"Pages 2972-2986\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665891\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665891","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

开发用于水电解的高效非贵金属双功能电催化剂对于提高氧进化反应(OER)和氢进化反应(HER)的缓慢动力学至关重要。我们采用电镀-退火-蚀刻策略,在泡沫镍(NF)上原位制备了具有三界面异质结合的自支撑多尺度多孔镍铁锌/镍锌镍催化剂(NiFeZn/NiZn-Ni/NF)。独特的多界面工程和三维多孔支架极大地改变了质量传输和电子相互作用,从而实现了卓越的双功能水分离电催化性能。NiFeZn/NiZn-Ni/NF 催化剂在 600 mA/cm² 的电流密度下,HER 和 OER 的过电位分别为 187 mV 和 320 mV,而且在碱性溶液中可持续 150 小时。此外,以 NiFeZn/NiZn-Ni/NF 为阴极和阳极组装的电解池在 1.796 V 和 1.901 V 的电池电压下分别达到了 600 mA/cm2 和 1000 mA/cm2 的电流密度,并在 50 mA/cm2 的条件下保持了 100 小时以上的高稳定性。这些发现凸显了 NiFeZn/NiZn-Ni/NF 作为一种经济高效的双功能电催化剂在整体水分离方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ building of multiscale porous NiFeZn/NiZn-Ni heterojunction for superior overall water splitting
The development of efficient nonprecious bifunctional electrocatalysts for water electrolysis is crucial to enhance the sluggish kinetics of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). A self-supporting, multiscale porous NiFeZn/NiZn-Ni catalyst with a triple interface heterojunction on nickel foam (NF) (NiFeZn/NiZn-Ni/NF) was in-situ fabricated using an electroplating−annealing−etching strategy. The unique multi- interface engineering and three-dimensional porous scaffold significantly modify the mass transport and electron interaction, resulting in superior bifunctional electrocatalytic performance for water splitting. The NiFeZn/NiZn-Ni/NF catalyst demonstrates low overpotentials of 187 mV for HER and 320 mV for OER at a current density of 600 mA/cm², along with high durability over 150 h in alkaline solution. Furthermore, an electrolytic cell assembled with NiFeZn/NiZn-Ni/NF as both the cathode and anode achieves the current densities of 600 and 1000 mA/cm2 at cell voltages of 1.796 and 1.901 V, respectively, maintaining the high stability at 50 mA/cm2 for over 100 h. These findings highlight the potential of NiFeZn/NiZn-Ni/NF as a cost-effective and highly efficient bifunctional electrocatalyst for overall water splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信