使用可分割变换器和位置坐标进行裂纹实例分割

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yuanlin Zhao , Wei Li , Jiangang Ding , Yansong Wang , Lili Pei , Aojia Tian
{"title":"使用可分割变换器和位置坐标进行裂纹实例分割","authors":"Yuanlin Zhao ,&nbsp;Wei Li ,&nbsp;Jiangang Ding ,&nbsp;Yansong Wang ,&nbsp;Lili Pei ,&nbsp;Aojia Tian","doi":"10.1016/j.autcon.2024.105838","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle and drone-mounted surveillance equipment face severe computational constraints, posing significant challenges for real-time, accurate crack segmentation. This paper introduces the crack location segmentation transformer (CLST) to address these issues. Images are processed to better resemble patches associated with cracks, enabling precise segmentation while significantly reducing the model’s computational load. To handle varying segmentation challenges, a range of models with different computational demands has been designed to suit diverse needs. The most lightweight model can be deployed for real-time use on edge devices. A module in the neck of the pipeline encodes crack coordinate information, and end-to-end training has resulted in state-of-the-art performance across multiple datasets.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"168 ","pages":"Article 105838"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack instance segmentation using splittable transformer and position coordinates\",\"authors\":\"Yuanlin Zhao ,&nbsp;Wei Li ,&nbsp;Jiangang Ding ,&nbsp;Yansong Wang ,&nbsp;Lili Pei ,&nbsp;Aojia Tian\",\"doi\":\"10.1016/j.autcon.2024.105838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vehicle and drone-mounted surveillance equipment face severe computational constraints, posing significant challenges for real-time, accurate crack segmentation. This paper introduces the crack location segmentation transformer (CLST) to address these issues. Images are processed to better resemble patches associated with cracks, enabling precise segmentation while significantly reducing the model’s computational load. To handle varying segmentation challenges, a range of models with different computational demands has been designed to suit diverse needs. The most lightweight model can be deployed for real-time use on edge devices. A module in the neck of the pipeline encodes crack coordinate information, and end-to-end training has resulted in state-of-the-art performance across multiple datasets.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"168 \",\"pages\":\"Article 105838\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580524005740\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580524005740","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

车载和无人机监控设备面临着严重的计算限制,给实时、准确的裂缝分割带来了巨大挑战。本文介绍了裂缝位置分割转换器(CLST)来解决这些问题。图像经过处理后更接近与裂缝相关的斑块,从而实现精确分割,同时显著降低模型的计算负荷。为了应对不同的分割挑战,我们设计了一系列具有不同计算要求的模型,以满足不同的需求。最轻便的模型可在边缘设备上实时使用。管道颈部的一个模块对裂缝坐标信息进行编码,端到端的训练在多个数据集上都取得了一流的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack instance segmentation using splittable transformer and position coordinates
Vehicle and drone-mounted surveillance equipment face severe computational constraints, posing significant challenges for real-time, accurate crack segmentation. This paper introduces the crack location segmentation transformer (CLST) to address these issues. Images are processed to better resemble patches associated with cracks, enabling precise segmentation while significantly reducing the model’s computational load. To handle varying segmentation challenges, a range of models with different computational demands has been designed to suit diverse needs. The most lightweight model can be deployed for real-time use on edge devices. A module in the neck of the pipeline encodes crack coordinate information, and end-to-end training has resulted in state-of-the-art performance across multiple datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信