Xusheng Wan , Hao Zhou , Fengxi Zhou , Jishuai Zhu , Khan Muhammad Shahab
{"title":"冻土-混凝土界面的介观剪切演变特征","authors":"Xusheng Wan , Hao Zhou , Fengxi Zhou , Jishuai Zhu , Khan Muhammad Shahab","doi":"10.1016/j.coldregions.2024.104342","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanical properties of frozen-concrete interfaces affect the stability and durability of engineering structures in cold regions. To investigate these properties, laboratory tests and numerical simulations were conducted to study the mesoscopic evolution of the shear stress-displacement relationship and the shearing process at the interface. The direct shear tests were performed at different environmental temperatures (−2 °C, −5 °C, and −10 °C) and normal stresses (100 kPa, 200 kPa, and 300 kPa) on the frozen soil-concrete interface, and Particle Flow Code (PFC) model of direct shear was developed. The mesoscopic parameters (particle displacement, rotation, force chain, stress, coordination number, porosity, fabric, etc.) of the interface during shearing were simulated using the PFC model. Moreover, the relationship among the interface temperature, cohesion, and friction coefficient was determined based on experimental data, and the accuracy of the PFC model was verified using previous experimental data. The results of the PFC shear model aligned well with those of the laboratory test, and the formation of shear bands was simulated well. The displacement of the soil particles on the upper layer outside the shear zone was uniform, and the direction was the same, whereas the particles inside the shear zone showed significant differences in the dislocation and rotation of the soil particles. The force chain, stress field, coordination number, and porosity were similar in the shear process and showed a concentrated distribution in the opposite direction of the shear motion, which reflected the consistency of the microcosmic response of the particles under the action of macroscopic external forces. The regression equations for the temperature, cohesion, and friction coefficient in this study can be used to simulate the shear behavior of frozen soil-concrete interfaces under different temperatures and normal stresses.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"229 ","pages":"Article 104342"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic shear evolution characteristics of frozen soil-concrete interface\",\"authors\":\"Xusheng Wan , Hao Zhou , Fengxi Zhou , Jishuai Zhu , Khan Muhammad Shahab\",\"doi\":\"10.1016/j.coldregions.2024.104342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanical properties of frozen-concrete interfaces affect the stability and durability of engineering structures in cold regions. To investigate these properties, laboratory tests and numerical simulations were conducted to study the mesoscopic evolution of the shear stress-displacement relationship and the shearing process at the interface. The direct shear tests were performed at different environmental temperatures (−2 °C, −5 °C, and −10 °C) and normal stresses (100 kPa, 200 kPa, and 300 kPa) on the frozen soil-concrete interface, and Particle Flow Code (PFC) model of direct shear was developed. The mesoscopic parameters (particle displacement, rotation, force chain, stress, coordination number, porosity, fabric, etc.) of the interface during shearing were simulated using the PFC model. Moreover, the relationship among the interface temperature, cohesion, and friction coefficient was determined based on experimental data, and the accuracy of the PFC model was verified using previous experimental data. The results of the PFC shear model aligned well with those of the laboratory test, and the formation of shear bands was simulated well. The displacement of the soil particles on the upper layer outside the shear zone was uniform, and the direction was the same, whereas the particles inside the shear zone showed significant differences in the dislocation and rotation of the soil particles. The force chain, stress field, coordination number, and porosity were similar in the shear process and showed a concentrated distribution in the opposite direction of the shear motion, which reflected the consistency of the microcosmic response of the particles under the action of macroscopic external forces. The regression equations for the temperature, cohesion, and friction coefficient in this study can be used to simulate the shear behavior of frozen soil-concrete interfaces under different temperatures and normal stresses.</div></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"229 \",\"pages\":\"Article 104342\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24002234\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002234","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Mesoscopic shear evolution characteristics of frozen soil-concrete interface
The mechanical properties of frozen-concrete interfaces affect the stability and durability of engineering structures in cold regions. To investigate these properties, laboratory tests and numerical simulations were conducted to study the mesoscopic evolution of the shear stress-displacement relationship and the shearing process at the interface. The direct shear tests were performed at different environmental temperatures (−2 °C, −5 °C, and −10 °C) and normal stresses (100 kPa, 200 kPa, and 300 kPa) on the frozen soil-concrete interface, and Particle Flow Code (PFC) model of direct shear was developed. The mesoscopic parameters (particle displacement, rotation, force chain, stress, coordination number, porosity, fabric, etc.) of the interface during shearing were simulated using the PFC model. Moreover, the relationship among the interface temperature, cohesion, and friction coefficient was determined based on experimental data, and the accuracy of the PFC model was verified using previous experimental data. The results of the PFC shear model aligned well with those of the laboratory test, and the formation of shear bands was simulated well. The displacement of the soil particles on the upper layer outside the shear zone was uniform, and the direction was the same, whereas the particles inside the shear zone showed significant differences in the dislocation and rotation of the soil particles. The force chain, stress field, coordination number, and porosity were similar in the shear process and showed a concentrated distribution in the opposite direction of the shear motion, which reflected the consistency of the microcosmic response of the particles under the action of macroscopic external forces. The regression equations for the temperature, cohesion, and friction coefficient in this study can be used to simulate the shear behavior of frozen soil-concrete interfaces under different temperatures and normal stresses.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.