{"title":"用于高性能锌金属电池的海藻启发式隔膜:促进动力学和限制副反应","authors":"","doi":"10.1016/j.jechem.2024.09.047","DOIUrl":null,"url":null,"abstract":"<div><div>Uncontrolled dendrite growth, sluggish reaction kinetics, and drastic side reactions on the anode-electrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries. Traditional glass fiber (GF) separator with chemical inertness is almost ineffective in restricting these challenges. Herein, inspired by the ionic enrichment behavior of seaweed plants, a facile biomass species, anionic sodium alginate (SA), is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode. Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties, the as-obtained SA@GF separator could act as ion pump to boost the Zn<sup>2+</sup> transference number (0.68), reduce the de-solvation energy barrier of hydrated Zn<sup>2+</sup>, and eliminate the undesired concentration polarization effect, which are verified by experimental tests, theoretical calculations, and finite element simulation, respectively. Based on these efficient modulation mechanisms, the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions. Therefore, the Zn||Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h (1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>), exhibiting favorable competitiveness with previously reported separator modification strategies. Impressively, the Zn-MnO<sub>2</sub> full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance, further verifying its practical application effect. This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A seaweed-inspired separator for high performance Zn metal batteries: Boosting kinetics and confining side-reactions\",\"authors\":\"\",\"doi\":\"10.1016/j.jechem.2024.09.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Uncontrolled dendrite growth, sluggish reaction kinetics, and drastic side reactions on the anode-electrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries. Traditional glass fiber (GF) separator with chemical inertness is almost ineffective in restricting these challenges. Herein, inspired by the ionic enrichment behavior of seaweed plants, a facile biomass species, anionic sodium alginate (SA), is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode. Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties, the as-obtained SA@GF separator could act as ion pump to boost the Zn<sup>2+</sup> transference number (0.68), reduce the de-solvation energy barrier of hydrated Zn<sup>2+</sup>, and eliminate the undesired concentration polarization effect, which are verified by experimental tests, theoretical calculations, and finite element simulation, respectively. Based on these efficient modulation mechanisms, the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions. Therefore, the Zn||Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h (1 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>), exhibiting favorable competitiveness with previously reported separator modification strategies. Impressively, the Zn-MnO<sub>2</sub> full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance, further verifying its practical application effect. This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624006715\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006715","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
A seaweed-inspired separator for high performance Zn metal batteries: Boosting kinetics and confining side-reactions
Uncontrolled dendrite growth, sluggish reaction kinetics, and drastic side reactions on the anode-electrolyte interface are the main obstacles that restrict the application prospect of aqueous zinc-ion batteries. Traditional glass fiber (GF) separator with chemical inertness is almost ineffective in restricting these challenges. Herein, inspired by the ionic enrichment behavior of seaweed plants, a facile biomass species, anionic sodium alginate (SA), is purposely decorated on the commercial GF separator to tackle these issues towards Zn anode. Benefiting from the abundant zincophilic functional groups and superior mechanical strength properties, the as-obtained SA@GF separator could act as ion pump to boost the Zn2+ transference number (0.68), reduce the de-solvation energy barrier of hydrated Zn2+, and eliminate the undesired concentration polarization effect, which are verified by experimental tests, theoretical calculations, and finite element simulation, respectively. Based on these efficient modulation mechanisms, the SA@GF separator can synchronously achieve well-aligned Zn deposition and the suppression of parasitic side-reactions. Therefore, the Zn||Zn coin cell integrated with SA@GF separator could yield a prolonged calendar lifespan over 1230 h (1 mA cm−2 and 1 mAh cm−2), exhibiting favorable competitiveness with previously reported separator modification strategies. Impressively, the Zn-MnO2 full and pouch cell assembled with the SA@GF separator also delivered superior cycling stability and rate performance, further verifying its practical application effect. This work provides a new design philosophy to stabilize the Zn anode from the aspect of separator.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy