利用决策树混合粒子群优化算法预测膨润土中 CeEDTA- 和 CoEDTA2- 的扩散情况

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Zhengye Feng, Jiaxing Feng , Junlei Tian, Xiaoqiong Shi, Dongchen Shao, Tao Wu, Qiang Shen
{"title":"利用决策树混合粒子群优化算法预测膨润土中 CeEDTA- 和 CoEDTA2- 的扩散情况","authors":"Zhengye Feng,&nbsp;Jiaxing Feng ,&nbsp;Junlei Tian,&nbsp;Xiaoqiong Shi,&nbsp;Dongchen Shao,&nbsp;Tao Wu,&nbsp;Qiang Shen","doi":"10.1016/j.clay.2024.107596","DOIUrl":null,"url":null,"abstract":"<div><div>The diffusion of radionuclide anionic complexes in bentonite barriers is of great concern in assessing the safety of repositories for high-level radioactive waste due to their high diffusivity. This study investigated the diffusion behaviors of CeEDTA<sup>−</sup> (as surrogate to <sup>241</sup>AmEDTA<sup>−</sup> and <sup>239</sup>PuEDTA<sup>−</sup>) and CoEDTA<sup>2−</sup> (as surrogate to <sup>60</sup>CoEDTA<sup>2−</sup>) in compacted bentonite using a through-diffusion method, a multi-porosity model (MP), and various decision tree algorithms hybridized with Particle Swarm Optimization (PSO). The algorithms included PSO-Light Gradient Boosting Machine (LightGBM), PSO-Categorical Gradient Boosting (CatBoost), PSO-EXtreme Gradient Boosting (XGBoost), and PSO-Random Forest (RF). The effective diffusion coefficients of these species in compacted Wyoming bentonite were determined utilizing the through-diffusion method to assess the reliability of machine learning (ML) models. The accuracy of cross validation ranked as follows: PSO-LightGBM (R<sub>CV</sub><sup>2</sup> = 0.91) &gt; PSO-XGBoost (R<sub>CV</sub><sup>2</sup> = 0.86) &gt; PSO-CatBoost (R<sub>CV</sub><sup>2</sup> = 0.85) &gt; PSO-RF (R<sub>CV</sub><sup>2</sup> = 0.81). Shapley additive explanation (SHAP) and feature importance (FI) with PSO-LightGBM identified the ion diffusion coefficient in water, total porosity, and rock capacity factor as the top three features. The MP model confirmed the reliability of partial dependence plots (PDP) method, highlighting the good interpretability of ML models. This work provides an accurate, generalizable, and interpretable ML method for analyzing the adsorptive radionuclide anionic complexes diffusion in bentonite barriers.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"262 ","pages":"Article 107596"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the diffusion of CeEDTA− and CoEDTA2− in bentonite using decision tree hybridized with particle swarm optimization algorithms\",\"authors\":\"Zhengye Feng,&nbsp;Jiaxing Feng ,&nbsp;Junlei Tian,&nbsp;Xiaoqiong Shi,&nbsp;Dongchen Shao,&nbsp;Tao Wu,&nbsp;Qiang Shen\",\"doi\":\"10.1016/j.clay.2024.107596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The diffusion of radionuclide anionic complexes in bentonite barriers is of great concern in assessing the safety of repositories for high-level radioactive waste due to their high diffusivity. This study investigated the diffusion behaviors of CeEDTA<sup>−</sup> (as surrogate to <sup>241</sup>AmEDTA<sup>−</sup> and <sup>239</sup>PuEDTA<sup>−</sup>) and CoEDTA<sup>2−</sup> (as surrogate to <sup>60</sup>CoEDTA<sup>2−</sup>) in compacted bentonite using a through-diffusion method, a multi-porosity model (MP), and various decision tree algorithms hybridized with Particle Swarm Optimization (PSO). The algorithms included PSO-Light Gradient Boosting Machine (LightGBM), PSO-Categorical Gradient Boosting (CatBoost), PSO-EXtreme Gradient Boosting (XGBoost), and PSO-Random Forest (RF). The effective diffusion coefficients of these species in compacted Wyoming bentonite were determined utilizing the through-diffusion method to assess the reliability of machine learning (ML) models. The accuracy of cross validation ranked as follows: PSO-LightGBM (R<sub>CV</sub><sup>2</sup> = 0.91) &gt; PSO-XGBoost (R<sub>CV</sub><sup>2</sup> = 0.86) &gt; PSO-CatBoost (R<sub>CV</sub><sup>2</sup> = 0.85) &gt; PSO-RF (R<sub>CV</sub><sup>2</sup> = 0.81). Shapley additive explanation (SHAP) and feature importance (FI) with PSO-LightGBM identified the ion diffusion coefficient in water, total porosity, and rock capacity factor as the top three features. The MP model confirmed the reliability of partial dependence plots (PDP) method, highlighting the good interpretability of ML models. This work provides an accurate, generalizable, and interpretable ML method for analyzing the adsorptive radionuclide anionic complexes diffusion in bentonite barriers.</div></div>\",\"PeriodicalId\":245,\"journal\":{\"name\":\"Applied Clay Science\",\"volume\":\"262 \",\"pages\":\"Article 107596\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Clay Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169131724003442\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003442","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于高扩散性,放射性核素阴离子复合物在膨润土屏障中的扩散是评估高放射性废物贮存库安全性的一个重要问题。本研究采用贯通扩散法、多孔模型(MP)以及与粒子群优化(PSO)混合的各种决策树算法,研究了 CeEDTA-(作为 241AmEDTA- 和 239PuEDTA- 的替代物)和 CoEDTA2-(作为 60CoEDTA2- 的替代物)在压实膨润土中的扩散行为。这些算法包括 PSO-轻梯度提升机(LightGBM)、PSO-分类梯度提升(CatBoost)、PSO-极端梯度提升(XGBoost)和 PSO-随机森林(RF)。利用贯通扩散法测定了这些物种在压实怀俄明膨润土中的有效扩散系数,以评估机器学习(ML)模型的可靠性。交叉验证的准确性排名如下:PSO-LightGBM(RCV2 = 0.91);PSO-XGBoost(RCV2 = 0.86);PSO-CatBoost(RCV2 = 0.85);PSO-RF(RCV2 = 0.81)。使用 PSO-LightGBM 的 Shapley 加性解释(SHAP)和特征重要性(FI)确定了水中离子扩散系数、总孔隙度和岩石容重系数为前三个特征。MP 模型证实了部分依存图 (PDP) 方法的可靠性,凸显了 ML 模型的良好可解释性。这项工作为分析膨润土屏障中吸附性放射性核素阴离子复合物扩散提供了一种准确、可推广和可解释的 ML 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the diffusion of CeEDTA− and CoEDTA2− in bentonite using decision tree hybridized with particle swarm optimization algorithms

Predicting the diffusion of CeEDTA− and CoEDTA2− in bentonite using decision tree hybridized with particle swarm optimization algorithms
The diffusion of radionuclide anionic complexes in bentonite barriers is of great concern in assessing the safety of repositories for high-level radioactive waste due to their high diffusivity. This study investigated the diffusion behaviors of CeEDTA (as surrogate to 241AmEDTA and 239PuEDTA) and CoEDTA2− (as surrogate to 60CoEDTA2−) in compacted bentonite using a through-diffusion method, a multi-porosity model (MP), and various decision tree algorithms hybridized with Particle Swarm Optimization (PSO). The algorithms included PSO-Light Gradient Boosting Machine (LightGBM), PSO-Categorical Gradient Boosting (CatBoost), PSO-EXtreme Gradient Boosting (XGBoost), and PSO-Random Forest (RF). The effective diffusion coefficients of these species in compacted Wyoming bentonite were determined utilizing the through-diffusion method to assess the reliability of machine learning (ML) models. The accuracy of cross validation ranked as follows: PSO-LightGBM (RCV2 = 0.91) > PSO-XGBoost (RCV2 = 0.86) > PSO-CatBoost (RCV2 = 0.85) > PSO-RF (RCV2 = 0.81). Shapley additive explanation (SHAP) and feature importance (FI) with PSO-LightGBM identified the ion diffusion coefficient in water, total porosity, and rock capacity factor as the top three features. The MP model confirmed the reliability of partial dependence plots (PDP) method, highlighting the good interpretability of ML models. This work provides an accurate, generalizable, and interpretable ML method for analyzing the adsorptive radionuclide anionic complexes diffusion in bentonite barriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信