利用有限信息量重建概率分布的拉普拉斯和梅林变换

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Lizhi Niu , Mario Di Paola , Antonina Pirrotta , Wei Xu
{"title":"利用有限信息量重建概率分布的拉普拉斯和梅林变换","authors":"Lizhi Niu ,&nbsp;Mario Di Paola ,&nbsp;Antonina Pirrotta ,&nbsp;Wei Xu","doi":"10.1016/j.probengmech.2024.103700","DOIUrl":null,"url":null,"abstract":"<div><div>A method for reconstructing the Probability Density Function (PDF) of a random variable using the Laplace transform is first introduced for one-sided PDFs. This approach defines new complex quantities, referred as Shifted Characteristic Functions, which allow the PDF to be computed using a classical Fourier series expansion. The method is then extended to handle double-sided PDFs by redefining the double-sided Laplace transform. This new definition remains applicable even when the integral in the inverse Laplace transform is discretized along the imaginary axis. For comparison, a new definition of double-sided Complex Fractional Moments based on Mellin transform is also introduced, addressing the singularity at zero that arises during PDF reconstruction.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"78 ","pages":"Article 103700"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplace and Mellin transform for reconstructing the probability distribution by a limited amount of information\",\"authors\":\"Lizhi Niu ,&nbsp;Mario Di Paola ,&nbsp;Antonina Pirrotta ,&nbsp;Wei Xu\",\"doi\":\"10.1016/j.probengmech.2024.103700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A method for reconstructing the Probability Density Function (PDF) of a random variable using the Laplace transform is first introduced for one-sided PDFs. This approach defines new complex quantities, referred as Shifted Characteristic Functions, which allow the PDF to be computed using a classical Fourier series expansion. The method is then extended to handle double-sided PDFs by redefining the double-sided Laplace transform. This new definition remains applicable even when the integral in the inverse Laplace transform is discretized along the imaginary axis. For comparison, a new definition of double-sided Complex Fractional Moments based on Mellin transform is also introduced, addressing the singularity at zero that arises during PDF reconstruction.</div></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"78 \",\"pages\":\"Article 103700\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026689202400122X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026689202400122X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文首次介绍了一种利用拉普拉斯变换重建随机变量概率密度函数(PDF)的单边 PDF 方法。这种方法定义了新的复杂量,称为移位特征函数,可以使用经典的傅里叶级数展开计算 PDF。然后,通过重新定义双面拉普拉斯变换,将该方法扩展到处理双面 PDF。即使反拉普拉斯变换中的积分沿虚轴离散,这一新定义仍然适用。为了便于比较,还引入了基于梅林变换的双面复分数矩的新定义,以解决 PDF 重构过程中出现的零点奇异性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laplace and Mellin transform for reconstructing the probability distribution by a limited amount of information
A method for reconstructing the Probability Density Function (PDF) of a random variable using the Laplace transform is first introduced for one-sided PDFs. This approach defines new complex quantities, referred as Shifted Characteristic Functions, which allow the PDF to be computed using a classical Fourier series expansion. The method is then extended to handle double-sided PDFs by redefining the double-sided Laplace transform. This new definition remains applicable even when the integral in the inverse Laplace transform is discretized along the imaginary axis. For comparison, a new definition of double-sided Complex Fractional Moments based on Mellin transform is also introduced, addressing the singularity at zero that arises during PDF reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信