{"title":"使用带有 65 GHz LC 振荡器阵列和聚四氟乙烯膜的介电传感器,对微生物生长进行灵敏的实时监测","authors":"Yoshihisa Yamashige , Siyao Chen , Yuichi Ogawa , Takashi Kawano , Shojiro Kikuchi","doi":"10.1016/j.sbsr.2024.100703","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we report a sensitive real-time microbial growth monitoring technique using a complementary metal-oxide semiconductor (CMOS) dielectric sensor with a polytetrafluoroethylene (PTFE) membrane. The sensor comprised an LC oscillator array operating at 65-GHz, whose resonant frequency was altered according to the dielectric properties of the region approximately 15 μm from the surface. We previously reported the rapid detection of viable <em>Escherichia coli</em> suspended in a liquid medium using the dielectric sensor; however, sensing growing cells was challenging owing to their tendency to float outside the effective sensing area in the suspended medium. To address this, we propose a new method to enhance the sensitivity of the device using a PTFE membrane that retains cells inside the effective area during measurement. Experiments using <em>Escherichia coli</em> suggested that the use of the membrane more than doubled sensitivity, reducing inspection times for practical applications. Furthermore, experiments with <em>Lactococcus lactis</em>, <em>Staphylococcus epidermidis</em>, and <em>Saccharomyces cerevisiae</em> demonstrated that this method can be used to monitor the growth of various microbes. In addition, variations in the output values of each oscillator facilitated the determination of microbial characteristics, such as cell size and growth distribution. This microbial growth monitoring technique is expected to find applications across a wide range of fields, such as food inspection, environmental hygiene monitoring, antibiotic susceptibility testing, new drug discovery, and the exploration of beneficial microbes.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100703"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive and real-time monitoring of microbial growth using a dielectric sensor with a 65-GHz LC-oscillator array and polytetrafluoroethylene membrane\",\"authors\":\"Yoshihisa Yamashige , Siyao Chen , Yuichi Ogawa , Takashi Kawano , Shojiro Kikuchi\",\"doi\":\"10.1016/j.sbsr.2024.100703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we report a sensitive real-time microbial growth monitoring technique using a complementary metal-oxide semiconductor (CMOS) dielectric sensor with a polytetrafluoroethylene (PTFE) membrane. The sensor comprised an LC oscillator array operating at 65-GHz, whose resonant frequency was altered according to the dielectric properties of the region approximately 15 μm from the surface. We previously reported the rapid detection of viable <em>Escherichia coli</em> suspended in a liquid medium using the dielectric sensor; however, sensing growing cells was challenging owing to their tendency to float outside the effective sensing area in the suspended medium. To address this, we propose a new method to enhance the sensitivity of the device using a PTFE membrane that retains cells inside the effective area during measurement. Experiments using <em>Escherichia coli</em> suggested that the use of the membrane more than doubled sensitivity, reducing inspection times for practical applications. Furthermore, experiments with <em>Lactococcus lactis</em>, <em>Staphylococcus epidermidis</em>, and <em>Saccharomyces cerevisiae</em> demonstrated that this method can be used to monitor the growth of various microbes. In addition, variations in the output values of each oscillator facilitated the determination of microbial characteristics, such as cell size and growth distribution. This microbial growth monitoring technique is expected to find applications across a wide range of fields, such as food inspection, environmental hygiene monitoring, antibiotic susceptibility testing, new drug discovery, and the exploration of beneficial microbes.</div></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"46 \",\"pages\":\"Article 100703\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Sensitive and real-time monitoring of microbial growth using a dielectric sensor with a 65-GHz LC-oscillator array and polytetrafluoroethylene membrane
In this study, we report a sensitive real-time microbial growth monitoring technique using a complementary metal-oxide semiconductor (CMOS) dielectric sensor with a polytetrafluoroethylene (PTFE) membrane. The sensor comprised an LC oscillator array operating at 65-GHz, whose resonant frequency was altered according to the dielectric properties of the region approximately 15 μm from the surface. We previously reported the rapid detection of viable Escherichia coli suspended in a liquid medium using the dielectric sensor; however, sensing growing cells was challenging owing to their tendency to float outside the effective sensing area in the suspended medium. To address this, we propose a new method to enhance the sensitivity of the device using a PTFE membrane that retains cells inside the effective area during measurement. Experiments using Escherichia coli suggested that the use of the membrane more than doubled sensitivity, reducing inspection times for practical applications. Furthermore, experiments with Lactococcus lactis, Staphylococcus epidermidis, and Saccharomyces cerevisiae demonstrated that this method can be used to monitor the growth of various microbes. In addition, variations in the output values of each oscillator facilitated the determination of microbial characteristics, such as cell size and growth distribution. This microbial growth monitoring technique is expected to find applications across a wide range of fields, such as food inspection, environmental hygiene monitoring, antibiotic susceptibility testing, new drug discovery, and the exploration of beneficial microbes.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.