{"title":"2005 年北极冬季气候变暖的强劲跃升与晴空向下长波辐射通量的增加相一致","authors":"Mikhail M. Latonin , Anna Yu. Demchenko","doi":"10.1016/j.dynatmoce.2024.101503","DOIUrl":null,"url":null,"abstract":"<div><div>In some areas of the Arctic, the Earth's surface temperature and near-surface air temperature are rising faster than in others. The purpose of this study is to identify, based on the ERA5 climate reanalysis data, the spatiotemporal structure of climatic changes in the Arctic during 1959–2022. The main emphasis is put on the following three parameters: mean surface clear-sky downward longwave radiation flux, near-surface air temperature, and skin temperature. A statistical model of stepwise changes was applied to the time series of the studied characteristics at each grid point of the entire Arctic (67°N–90°N). The results obtained indicate a close relationship between all parameters in the winter season. The dominant year of stepwise changes in the Arctic is 2005. Moreover, it is precisely this transition from one state of the climate system to another that is statistically significant over a large territory, which is located mainly in the Eastern Hemisphere. The time series averaged over the identified areas are highly correlated with each other, and the year 2005 characterizes the change from a sharp increase in values to their variability without a pronounced trend. The available satellite observations fully confirm the temporal structure of the stepwise changes for the studied parameters and largely confirm its spatial structure. Thus, the clear-sky downward longwave radiation flux is one of the leading factors in the formation of the thermal regime of the Arctic.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"108 ","pages":"Article 101503"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust stepwise jump in the Arctic wintertime warming in 2005 coherent with the increased clear-sky downward longwave radiation flux\",\"authors\":\"Mikhail M. Latonin , Anna Yu. Demchenko\",\"doi\":\"10.1016/j.dynatmoce.2024.101503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In some areas of the Arctic, the Earth's surface temperature and near-surface air temperature are rising faster than in others. The purpose of this study is to identify, based on the ERA5 climate reanalysis data, the spatiotemporal structure of climatic changes in the Arctic during 1959–2022. The main emphasis is put on the following three parameters: mean surface clear-sky downward longwave radiation flux, near-surface air temperature, and skin temperature. A statistical model of stepwise changes was applied to the time series of the studied characteristics at each grid point of the entire Arctic (67°N–90°N). The results obtained indicate a close relationship between all parameters in the winter season. The dominant year of stepwise changes in the Arctic is 2005. Moreover, it is precisely this transition from one state of the climate system to another that is statistically significant over a large territory, which is located mainly in the Eastern Hemisphere. The time series averaged over the identified areas are highly correlated with each other, and the year 2005 characterizes the change from a sharp increase in values to their variability without a pronounced trend. The available satellite observations fully confirm the temporal structure of the stepwise changes for the studied parameters and largely confirm its spatial structure. Thus, the clear-sky downward longwave radiation flux is one of the leading factors in the formation of the thermal regime of the Arctic.</div></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":\"108 \",\"pages\":\"Article 101503\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026524000721\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026524000721","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A robust stepwise jump in the Arctic wintertime warming in 2005 coherent with the increased clear-sky downward longwave radiation flux
In some areas of the Arctic, the Earth's surface temperature and near-surface air temperature are rising faster than in others. The purpose of this study is to identify, based on the ERA5 climate reanalysis data, the spatiotemporal structure of climatic changes in the Arctic during 1959–2022. The main emphasis is put on the following three parameters: mean surface clear-sky downward longwave radiation flux, near-surface air temperature, and skin temperature. A statistical model of stepwise changes was applied to the time series of the studied characteristics at each grid point of the entire Arctic (67°N–90°N). The results obtained indicate a close relationship between all parameters in the winter season. The dominant year of stepwise changes in the Arctic is 2005. Moreover, it is precisely this transition from one state of the climate system to another that is statistically significant over a large territory, which is located mainly in the Eastern Hemisphere. The time series averaged over the identified areas are highly correlated with each other, and the year 2005 characterizes the change from a sharp increase in values to their variability without a pronounced trend. The available satellite observations fully confirm the temporal structure of the stepwise changes for the studied parameters and largely confirm its spatial structure. Thus, the clear-sky downward longwave radiation flux is one of the leading factors in the formation of the thermal regime of the Arctic.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.