论某些退化和奇异的椭圆 PDE IV:具有对数退化或奇异性的非分歧形式算子

IF 2.4 2区 数学 Q1 MATHEMATICS
Diego Maldonado
{"title":"论某些退化和奇异的椭圆 PDE IV:具有对数退化或奇异性的非分歧形式算子","authors":"Diego Maldonado","doi":"10.1016/j.jde.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>Harnack inequalities for nonnegative strong solutions to nondivergence-form elliptic PDEs with degeneracies or singularities of logarithmic type are proved. The results are developed within the Monge-Ampère real-analytic and geometric tools associated to certain convex functions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain degenerate and singular elliptic PDEs IV: Nondivergence-form operators with logarithmic degeneracies or singularities\",\"authors\":\"Diego Maldonado\",\"doi\":\"10.1016/j.jde.2024.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Harnack inequalities for nonnegative strong solutions to nondivergence-form elliptic PDEs with degeneracies or singularities of logarithmic type are proved. The results are developed within the Monge-Ampère real-analytic and geometric tools associated to certain convex functions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006673\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006673","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了具有对数类型退化或奇异性的非辐散形式椭圆 PDEs 的非负强解的哈纳克不等式。这些结果是在与某些凸函数相关的 Monge-Ampère 实解析和几何工具中得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain degenerate and singular elliptic PDEs IV: Nondivergence-form operators with logarithmic degeneracies or singularities
Harnack inequalities for nonnegative strong solutions to nondivergence-form elliptic PDEs with degeneracies or singularities of logarithmic type are proved. The results are developed within the Monge-Ampère real-analytic and geometric tools associated to certain convex functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信