Marie-Joe Dib PhD , Joe David Azzo MD , Lei Zhao MD, PhD , Oday Salman MD , Sushrima Gan PhD , Marc L. De Buyzere MSc , Tim De Meyer PhD , Christina Ebert PhD , Kushan Gunawardhana PhD , Laura Liu PhD , David Gordon PhD , Dietmar Seiffert MD, PhD , Chang Ching-Pin MD, PhD , Payman Zamani MD, MTR , Jordana B. Cohen MD, MSCE , Bianca Pourmussa BA , Seavmeiyin Kun BA , Dipender Gill MD, PhD , Stephen Burgess PhD , Vanessa van Empel MD , Julio A. Chirinos MD, PhD
{"title":"大动脉僵化的蛋白质组全基因研究","authors":"Marie-Joe Dib PhD , Joe David Azzo MD , Lei Zhao MD, PhD , Oday Salman MD , Sushrima Gan PhD , Marc L. De Buyzere MSc , Tim De Meyer PhD , Christina Ebert PhD , Kushan Gunawardhana PhD , Laura Liu PhD , David Gordon PhD , Dietmar Seiffert MD, PhD , Chang Ching-Pin MD, PhD , Payman Zamani MD, MTR , Jordana B. Cohen MD, MSCE , Bianca Pourmussa BA , Seavmeiyin Kun BA , Dipender Gill MD, PhD , Stephen Burgess PhD , Vanessa van Empel MD , Julio A. Chirinos MD, PhD","doi":"10.1016/j.jacbts.2024.05.017","DOIUrl":null,"url":null,"abstract":"<div><div>The molecular mechanisms contributing to large artery stiffness (LAS) are not fully understood. The aim of this study was to investigate the association between circulating plasma proteins and LAS using complementary proteomic and genomic analyses. A total of 106 proteins associated with carotid-femoral pulse-wave velocity, a noninvasive measure of LAS, were identified in 1,178 individuals from the Asklepios study cohort. Mendelian randomization analyses revealed causal effects of 13 genetically predicted plasma proteins on pulse pressure, including cartilage intermediate layer protein-2, high-temperature requirement A serine peptidase-1, and neuronal growth factor-1. These findings suggest potential novel therapeutic targets to reduce LAS and its related diseases.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 10","pages":"Pages 1178-1191"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteome-Wide Genetic Investigation of Large Artery Stiffness\",\"authors\":\"Marie-Joe Dib PhD , Joe David Azzo MD , Lei Zhao MD, PhD , Oday Salman MD , Sushrima Gan PhD , Marc L. De Buyzere MSc , Tim De Meyer PhD , Christina Ebert PhD , Kushan Gunawardhana PhD , Laura Liu PhD , David Gordon PhD , Dietmar Seiffert MD, PhD , Chang Ching-Pin MD, PhD , Payman Zamani MD, MTR , Jordana B. Cohen MD, MSCE , Bianca Pourmussa BA , Seavmeiyin Kun BA , Dipender Gill MD, PhD , Stephen Burgess PhD , Vanessa van Empel MD , Julio A. Chirinos MD, PhD\",\"doi\":\"10.1016/j.jacbts.2024.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The molecular mechanisms contributing to large artery stiffness (LAS) are not fully understood. The aim of this study was to investigate the association between circulating plasma proteins and LAS using complementary proteomic and genomic analyses. A total of 106 proteins associated with carotid-femoral pulse-wave velocity, a noninvasive measure of LAS, were identified in 1,178 individuals from the Asklepios study cohort. Mendelian randomization analyses revealed causal effects of 13 genetically predicted plasma proteins on pulse pressure, including cartilage intermediate layer protein-2, high-temperature requirement A serine peptidase-1, and neuronal growth factor-1. These findings suggest potential novel therapeutic targets to reduce LAS and its related diseases.</div></div>\",\"PeriodicalId\":14831,\"journal\":{\"name\":\"JACC: Basic to Translational Science\",\"volume\":\"9 10\",\"pages\":\"Pages 1178-1191\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACC: Basic to Translational Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452302X24002274\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24002274","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
导致大动脉僵化(LAS)的分子机制尚不完全清楚。本研究旨在通过蛋白质组和基因组互补分析,研究循环血浆蛋白与大动脉僵化之间的关联。在 Asklepios 研究队列中的 1178 人中,共鉴定出 106 种与颈动脉-股动脉脉搏波速度(LAS 的无创测量指标)相关的蛋白质。孟德尔随机分析显示,13 种基因预测的血浆蛋白对脉压有因果效应,包括软骨中间层蛋白-2、高温要求 A 丝氨酸肽酶-1 和神经元生长因子-1。这些发现为减少 LAS 及其相关疾病提供了潜在的新治疗靶点。
Proteome-Wide Genetic Investigation of Large Artery Stiffness
The molecular mechanisms contributing to large artery stiffness (LAS) are not fully understood. The aim of this study was to investigate the association between circulating plasma proteins and LAS using complementary proteomic and genomic analyses. A total of 106 proteins associated with carotid-femoral pulse-wave velocity, a noninvasive measure of LAS, were identified in 1,178 individuals from the Asklepios study cohort. Mendelian randomization analyses revealed causal effects of 13 genetically predicted plasma proteins on pulse pressure, including cartilage intermediate layer protein-2, high-temperature requirement A serine peptidase-1, and neuronal growth factor-1. These findings suggest potential novel therapeutic targets to reduce LAS and its related diseases.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.