静态纳维-斯托克斯方程的渐近行为

IF 2.4 2区 数学 Q1 MATHEMATICS
Yupei Li, Wei Luo
{"title":"静态纳维-斯托克斯方程的渐近行为","authors":"Yupei Li,&nbsp;Wei Luo","doi":"10.1016/j.jde.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the asymptotic behavior of solutions to the axisymmetric stationary Navier-Stokes equations. We assume that the flow is periodic in <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-direction and has no swirl. Under the general integrability condition, we prove the pointwise decay estimate of the vorticity <em>ω</em> and obtain the Liouville-type theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic behavior for stationary Navier-Stokes equations\",\"authors\":\"Yupei Li,&nbsp;Wei Luo\",\"doi\":\"10.1016/j.jde.2024.10.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the asymptotic behavior of solutions to the axisymmetric stationary Navier-Stokes equations. We assume that the flow is periodic in <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-direction and has no swirl. Under the general integrability condition, we prove the pointwise decay estimate of the vorticity <em>ω</em> and obtain the Liouville-type theorem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006624\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006624","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了轴对称静止纳维-斯托克斯方程解的渐近行为。我们假设流动在 x3 方向上是周期性的,并且没有漩涡。在一般的可整性条件下,我们证明了涡度 ω 的点式衰减估计值,并得到了 Liouville 型定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic behavior for stationary Navier-Stokes equations
In this paper, we investigate the asymptotic behavior of solutions to the axisymmetric stationary Navier-Stokes equations. We assume that the flow is periodic in x3-direction and has no swirl. Under the general integrability condition, we prove the pointwise decay estimate of the vorticity ω and obtain the Liouville-type theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信