具有线性漂移的反应扩散多孔介质流不可压缩极限的 L1 理论

IF 2.4 2区 数学 Q1 MATHEMATICS
Noureddine Igbida
{"title":"具有线性漂移的反应扩散多孔介质流不可压缩极限的 L1 理论","authors":"Noureddine Igbida","doi":"10.1016/j.jde.2024.09.042","DOIUrl":null,"url":null,"abstract":"<div><div>Our aim is to study existence, uniqueness and the limit, as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, of the solution of the porous medium equation with linear drift <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mspace></mspace><mi>V</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field <em>V</em> on the boundary and a general source term <em>g</em> (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on <em>V</em>, we show uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1015-1051"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-theory for incompressible limit of reaction-diffusion porous medium flow with linear drift\",\"authors\":\"Noureddine Igbida\",\"doi\":\"10.1016/j.jde.2024.09.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our aim is to study existence, uniqueness and the limit, as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, of the solution of the porous medium equation with linear drift <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mspace></mspace><mi>V</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field <em>V</em> on the boundary and a general source term <em>g</em> (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on <em>V</em>, we show uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1015-1051\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是研究具有线性漂移的多孔介质方程 ∂tu-Δum+∇⋅(uV)=g(t,x,u) 的解的存在性、唯一性以及 m→∞ 时的极限。我们在处理这个问题时,不对解作任何符号限制,在边界上有一个外指向向量场 V 和一个一般源项 g(包括连续 Lipschitz 情况)。在 V 的合理尖锐 Sobolev 假设下,我们展示了对具有线性漂移的反应扩散 Hele-Shaw 流解的均匀 L1 收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L1-theory for incompressible limit of reaction-diffusion porous medium flow with linear drift
Our aim is to study existence, uniqueness and the limit, as m, of the solution of the porous medium equation with linear drift tuΔum+(uV)=g(t,x,u) in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field V on the boundary and a general source term g (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on V, we show uniform L1-convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信