{"title":"具有线性漂移的反应扩散多孔介质流不可压缩极限的 L1 理论","authors":"Noureddine Igbida","doi":"10.1016/j.jde.2024.09.042","DOIUrl":null,"url":null,"abstract":"<div><div>Our aim is to study existence, uniqueness and the limit, as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, of the solution of the porous medium equation with linear drift <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mspace></mspace><mi>V</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field <em>V</em> on the boundary and a general source term <em>g</em> (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on <em>V</em>, we show uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1015-1051"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1-theory for incompressible limit of reaction-diffusion porous medium flow with linear drift\",\"authors\":\"Noureddine Igbida\",\"doi\":\"10.1016/j.jde.2024.09.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our aim is to study existence, uniqueness and the limit, as <span><math><mi>m</mi><mo>→</mo><mo>∞</mo></math></span>, of the solution of the porous medium equation with linear drift <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mspace></mspace><mi>V</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span> in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field <em>V</em> on the boundary and a general source term <em>g</em> (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on <em>V</em>, we show uniform <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1015-1051\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们的目的是研究具有线性漂移的多孔介质方程 ∂tu-Δum+∇⋅(uV)=g(t,x,u) 的解的存在性、唯一性以及 m→∞ 时的极限。我们在处理这个问题时,不对解作任何符号限制,在边界上有一个外指向向量场 V 和一个一般源项 g(包括连续 Lipschitz 情况)。在 V 的合理尖锐 Sobolev 假设下,我们展示了对具有线性漂移的反应扩散 Hele-Shaw 流解的均匀 L1 收敛性。
L1-theory for incompressible limit of reaction-diffusion porous medium flow with linear drift
Our aim is to study existence, uniqueness and the limit, as , of the solution of the porous medium equation with linear drift in bounded domain with Dirichlet boundary condition. We treat the problem without any sign restriction on the solution with an outpointing vector field V on the boundary and a general source term g (including the continuous Lipschitz case). Under reasonably sharp Sobolev assumptions on V, we show uniform -convergence towards the solution of reaction-diffusion Hele-Shaw flow with linear drift.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics