{"title":"真空上粘度消失的随机可压缩纳维-斯托克斯方程弱鞅解的连续稳定性","authors":"Zdzisław Brzeźniak , Gaurav Dhariwal , Ewelina Zatorska","doi":"10.1016/j.jde.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient driven by multiplicative stochastic noise. We consider three-dimensional periodic domain and prove that the family of weak martingale solutions is sequentially compact.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential stability of weak martingale solutions to stochastic compressible Navier-Stokes equations with viscosity vanishing on vacuum\",\"authors\":\"Zdzisław Brzeźniak , Gaurav Dhariwal , Ewelina Zatorska\",\"doi\":\"10.1016/j.jde.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient driven by multiplicative stochastic noise. We consider three-dimensional periodic domain and prove that the family of weak martingale solutions is sequentially compact.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400665X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400665X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sequential stability of weak martingale solutions to stochastic compressible Navier-Stokes equations with viscosity vanishing on vacuum
In this paper, we investigate the compressible Navier-Stokes equations with degenerate, density-dependent, viscosity coefficient driven by multiplicative stochastic noise. We consider three-dimensional periodic domain and prove that the family of weak martingale solutions is sequentially compact.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics