利用非测地线牵引路径和自动纤维铺放制造技术优化复合材料压力容器穹顶

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Alexander Air , Ebrahim Oromiehie , B. Gangadhara Prusty
{"title":"利用非测地线牵引路径和自动纤维铺放制造技术优化复合材料压力容器穹顶","authors":"Alexander Air ,&nbsp;Ebrahim Oromiehie ,&nbsp;B. Gangadhara Prusty","doi":"10.1016/j.compositesb.2024.111906","DOIUrl":null,"url":null,"abstract":"<div><div>Filament winding lacks the flexibility to produce composite pressure vessels with highly optimised thickness and fibre angles. Automated fibre placement can overcome this limitation using its selective material placement capability. In this work, two dome thickness optimisation strategies are introduced and evaluated for mass reduction and manufacturability. Additionally, fifteen non-geodesic fibre paths were examined using finite element analysis (FEA). The combined thickness and fibre angle optimised domes averaged a 48.94 % improvement in structural efficiency from the baseline. A demonstrator was manufactured, and thickness and fibre angle were measured with average differences of 3.45 % and 1.86 % from the simulations. Finally, hydrostatic pressure testing was performed to validate the FEA.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"288 ","pages":"Article 111906"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of a composite pressure vessel dome using non-geodesic tow paths and automated fibre placement manufacturing\",\"authors\":\"Alexander Air ,&nbsp;Ebrahim Oromiehie ,&nbsp;B. Gangadhara Prusty\",\"doi\":\"10.1016/j.compositesb.2024.111906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Filament winding lacks the flexibility to produce composite pressure vessels with highly optimised thickness and fibre angles. Automated fibre placement can overcome this limitation using its selective material placement capability. In this work, two dome thickness optimisation strategies are introduced and evaluated for mass reduction and manufacturability. Additionally, fifteen non-geodesic fibre paths were examined using finite element analysis (FEA). The combined thickness and fibre angle optimised domes averaged a 48.94 % improvement in structural efficiency from the baseline. A demonstrator was manufactured, and thickness and fibre angle were measured with average differences of 3.45 % and 1.86 % from the simulations. Finally, hydrostatic pressure testing was performed to validate the FEA.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"288 \",\"pages\":\"Article 111906\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007182\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007182","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在生产厚度和纤维角度高度优化的复合材料压力容器时,纤维缠绕缺乏灵活性。自动纤维铺放可以利用其选择性材料铺放能力克服这一局限性。在这项工作中,引入了两种圆顶厚度优化策略,并对其减小质量和可制造性进行了评估。此外,还使用有限元分析(FEA)检查了 15 条非大地纤维路径。经过厚度和纤维角度优化的组合穹顶的结构效率比基线平均提高了 48.94%。制造了一个演示器,测量了厚度和纤维角度,与模拟结果相比,平均差异为 3.45 % 和 1.86 %。最后,进行了静水压力测试以验证有限元分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimisation of a composite pressure vessel dome using non-geodesic tow paths and automated fibre placement manufacturing

Optimisation of a composite pressure vessel dome using non-geodesic tow paths and automated fibre placement manufacturing
Filament winding lacks the flexibility to produce composite pressure vessels with highly optimised thickness and fibre angles. Automated fibre placement can overcome this limitation using its selective material placement capability. In this work, two dome thickness optimisation strategies are introduced and evaluated for mass reduction and manufacturability. Additionally, fifteen non-geodesic fibre paths were examined using finite element analysis (FEA). The combined thickness and fibre angle optimised domes averaged a 48.94 % improvement in structural efficiency from the baseline. A demonstrator was manufactured, and thickness and fibre angle were measured with average differences of 3.45 % and 1.86 % from the simulations. Finally, hydrostatic pressure testing was performed to validate the FEA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信