{"title":"颗粒增韧层对碳纤维/环氧树脂预浸料的材料加工性和成型特性的影响","authors":"","doi":"10.1016/j.compositesb.2024.111907","DOIUrl":null,"url":null,"abstract":"<div><div>Introducing toughening materials between laminas is a common approach to enhance the interlaminar toughness of composite materials, thereby improving the crack resistance and damage tolerance. Various physical formats of toughening materials, including particles, veils, and mats, have been introduced. However, the incorporation of solid and separately phased tougheners alters not only the mechanical characteristics of prepregs but also their processability during layup and forming. This alteration can lead to unpredictable forming behaviour and the generation of defects during manufacturing, which has not been extensively investigated.</div><div>In this work, the effect of interleaving tougheners on the forming and consolidation characteristics of carbon/epoxy prepregs was investigated by measuring the interply friction and bulk factor of prepreg stacks incorporating polyamide particle tougheners of various sizes and shapes at the ply interfaces. Additionally, the feasibility of single diaphragm forming without heating by utilising the low friction characteristic of the particle-coated prepreg surface was explored.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of particle toughening layers on the material processibility and forming characteristics of carbon fibre/epoxy prepregs\",\"authors\":\"\",\"doi\":\"10.1016/j.compositesb.2024.111907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Introducing toughening materials between laminas is a common approach to enhance the interlaminar toughness of composite materials, thereby improving the crack resistance and damage tolerance. Various physical formats of toughening materials, including particles, veils, and mats, have been introduced. However, the incorporation of solid and separately phased tougheners alters not only the mechanical characteristics of prepregs but also their processability during layup and forming. This alteration can lead to unpredictable forming behaviour and the generation of defects during manufacturing, which has not been extensively investigated.</div><div>In this work, the effect of interleaving tougheners on the forming and consolidation characteristics of carbon/epoxy prepregs was investigated by measuring the interply friction and bulk factor of prepreg stacks incorporating polyamide particle tougheners of various sizes and shapes at the ply interfaces. Additionally, the feasibility of single diaphragm forming without heating by utilising the low friction characteristic of the particle-coated prepreg surface was explored.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007194\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007194","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The effect of particle toughening layers on the material processibility and forming characteristics of carbon fibre/epoxy prepregs
Introducing toughening materials between laminas is a common approach to enhance the interlaminar toughness of composite materials, thereby improving the crack resistance and damage tolerance. Various physical formats of toughening materials, including particles, veils, and mats, have been introduced. However, the incorporation of solid and separately phased tougheners alters not only the mechanical characteristics of prepregs but also their processability during layup and forming. This alteration can lead to unpredictable forming behaviour and the generation of defects during manufacturing, which has not been extensively investigated.
In this work, the effect of interleaving tougheners on the forming and consolidation characteristics of carbon/epoxy prepregs was investigated by measuring the interply friction and bulk factor of prepreg stacks incorporating polyamide particle tougheners of various sizes and shapes at the ply interfaces. Additionally, the feasibility of single diaphragm forming without heating by utilising the low friction characteristic of the particle-coated prepreg surface was explored.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.