针对广泛耐药结核病(XDR-TB)的纳米工程解决方案:新型纳米药物

IF 5.45 Q1 Physics and Astronomy
Dilpreet Singh , Vrinda Krishna , Nitya Kumari , Anoushka Banerjee , Prithviraj Kapoor
{"title":"针对广泛耐药结核病(XDR-TB)的纳米工程解决方案:新型纳米药物","authors":"Dilpreet Singh ,&nbsp;Vrinda Krishna ,&nbsp;Nitya Kumari ,&nbsp;Anoushka Banerjee ,&nbsp;Prithviraj Kapoor","doi":"10.1016/j.nanoso.2024.101390","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101390"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-engineered solutions for extensively drug-resistant tuberculosis (XDR-TB): A novel nanomedicine\",\"authors\":\"Dilpreet Singh ,&nbsp;Vrinda Krishna ,&nbsp;Nitya Kumari ,&nbsp;Anoushka Banerjee ,&nbsp;Prithviraj Kapoor\",\"doi\":\"10.1016/j.nanoso.2024.101390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101390\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24003020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

纳米工程解决方案正在彻底改变抗广泛耐药结核病(XDR-TB)的斗争,这是一项对传统结核病药物具有抗药性的重大公共卫生挑战。利用纳米粒子的独特性能,这种新型纳米医学范例可增强药物输送、抗击细菌耐药性并减少副作用,为结核病治疗带来了希望。与传统药物相比,纳米颗粒因其尺寸小而能更有效地穿透分枝杆菌细胞,从而实现直接向受感染细胞精确给药。这种靶向给药提高了药物疗效,并限制了药物接触非感染细胞的机会,从而减少了潜在的副作用。此外,纳米颗粒还可以用配体修饰,使其与分枝杆菌细胞特异性结合,确保精确给药。纳米工程还允许在单个纳米粒子内联合给药多种药物,这对于治疗 XDR-TB 所需的多种药物疗法至关重要。将药物封装在纳米颗粒中可以在感染部位控制释放,从而长期保持有效的药物浓度,提高治疗效果。此外,在这些纳米颗粒中加入诊断药剂还能支持治疗方法,对治疗和疾病进展进行实时监测。这种综合策略可确保及时调整治疗方案并实现个性化治疗,从而使纳米工程解决方案成为应对 XDR-TB 的一种新颖而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano-engineered solutions for extensively drug-resistant tuberculosis (XDR-TB): A novel nanomedicine
Nano-engineered solutions are revolutionizing the fight against Extensively Drug-Resistant Tuberculosis (XDR-TB), a major public health challenge resistant to conventional TB drugs. Utilizing the unique properties of nanoparticles, this new nanomedicine paradigm enhances drug delivery, combats bacterial resistance and reduces side effects, offering a promising advance in TB therapy. Nanoparticles can penetrate mycobacterial cells more effectively than traditional drugs due to their size, enabling precise drug delivery directly to infected cells. This targeted delivery increases drug efficacy and limits exposure to non-infected cells, reducing potential side effects. Additionally, nanoparticles can be modified with ligands that specifically bind to mycobacterial cells, ensuring precise drug delivery. Nano-engineering also allows for the co-delivery of multiple drugs within a single nanoparticle, crucial for the multi-drug regimen needed for XDR-TB. Encapsulating drugs within nanoparticles allows for controlled release at the infection site, maintaining effective drug levels over time and improving treatment efficacy. Furthermore, incorporating diagnostic agents into these nanoparticles supports a theranostic approach, allowing real-time monitoring of treatment and disease progression. This integrated strategy ensures timely treatment adjustments and personalizes therapy, making nano-engineered solutions a novel and effective approach to tackle XDR-TB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Structures & Nano-Objects
Nano-Structures & Nano-Objects Physics and Astronomy-Condensed Matter Physics
CiteScore
9.20
自引率
0.00%
发文量
60
审稿时长
22 days
期刊介绍: Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信