{"title":"奇异可分解连续","authors":"Eiichi Matsuhashi","doi":"10.1016/j.topol.2024.109110","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we first provide an argument for the method used in <span><span>[7]</span></span> and <span><span>[10]</span></span> to blow up a point inside a subarc of a one-dimensional continuum to an arbitrary continuum. Next, we give an example of s Wilder continuum containing no strongly Wilder continua, no continuum-wise Wilder continua, no semiaposyndetic continua and no <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-continua. Also, we provide an example of a continuum such that each positive Whitney level of the hyperspace of the continuum is strongly Wilder, although the continuum itself does not contain any Wilder continua.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"358 ","pages":"Article 109110"},"PeriodicalIF":0.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular decomposable continua\",\"authors\":\"Eiichi Matsuhashi\",\"doi\":\"10.1016/j.topol.2024.109110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we first provide an argument for the method used in <span><span>[7]</span></span> and <span><span>[10]</span></span> to blow up a point inside a subarc of a one-dimensional continuum to an arbitrary continuum. Next, we give an example of s Wilder continuum containing no strongly Wilder continua, no continuum-wise Wilder continua, no semiaposyndetic continua and no <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-continua. Also, we provide an example of a continuum such that each positive Whitney level of the hyperspace of the continuum is strongly Wilder, although the continuum itself does not contain any Wilder continua.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"358 \",\"pages\":\"Article 109110\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124002955\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002955","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we first provide an argument for the method used in [7] and [10] to blow up a point inside a subarc of a one-dimensional continuum to an arbitrary continuum. Next, we give an example of s Wilder continuum containing no strongly Wilder continua, no continuum-wise Wilder continua, no semiaposyndetic continua and no -continua. Also, we provide an example of a continuum such that each positive Whitney level of the hyperspace of the continuum is strongly Wilder, although the continuum itself does not contain any Wilder continua.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.