从次皮质重建高皮质

IF 0.9 2区 数学 Q2 MATHEMATICS
Wenjie Zhong , Xiande Zhang
{"title":"从次皮质重建高皮质","authors":"Wenjie Zhong ,&nbsp;Xiande Zhang","doi":"10.1016/j.jcta.2024.105966","DOIUrl":null,"url":null,"abstract":"<div><div>For a given <em>n</em>, what is the smallest number <em>k</em> such that every sequence of length <em>n</em> is determined by the multiset of all its <em>k</em>-subsequences? This is called the <em>k</em>-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>-matrices from submatrices. Previous works show that the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for sequences and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for matrices. We study this <em>k</em>-deck problem for general dimension <em>d</em> and prove that, the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for reconstructing any <em>d</em> dimensional hypermatrix of order <em>n</em> from the multiset of all its subhypermatrices of order <em>k</em>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105966"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of hypermatrices from subhypermatrices\",\"authors\":\"Wenjie Zhong ,&nbsp;Xiande Zhang\",\"doi\":\"10.1016/j.jcta.2024.105966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a given <em>n</em>, what is the smallest number <em>k</em> such that every sequence of length <em>n</em> is determined by the multiset of all its <em>k</em>-subsequences? This is called the <em>k</em>-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span>-matrices from submatrices. Previous works show that the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for sequences and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for matrices. We study this <em>k</em>-deck problem for general dimension <em>d</em> and prove that, the smallest <em>k</em> is at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> for reconstructing any <em>d</em> dimensional hypermatrix of order <em>n</em> from the multiset of all its subhypermatrices of order <em>k</em>.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"209 \",\"pages\":\"Article 105966\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001055\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001055","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的 n,使得长度为 n 的每个序列都由其所有 k 个子序列的多集决定的最小数 k 是多少?这被称为序列重构的 k 层问题,并已被推广到二维情况--从子矩阵重构 n×n 矩阵。之前的研究表明,对于序列,最小的 k 至多为 O(n12),而对于矩阵,则至多为 O(n23)。我们研究了一般维数为 d 的 k 层问题,并证明了从其所有阶数为 k 的子超矩阵的多集重构任何阶数为 n 的 d 维超矩阵时,最小 k 至多为 O(ndd+1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of hypermatrices from subhypermatrices
For a given n, what is the smallest number k such that every sequence of length n is determined by the multiset of all its k-subsequences? This is called the k-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of n×n-matrices from submatrices. Previous works show that the smallest k is at most O(n12) for sequences and at most O(n23) for matrices. We study this k-deck problem for general dimension d and prove that, the smallest k is at most O(ndd+1) for reconstructing any d dimensional hypermatrix of order n from the multiset of all its subhypermatrices of order k.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信