提高从生物质中提取的低成本硬碳的储存性能

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chen Wang , Debasis Sen , Vinod K. Aswal , Lan Weiguang , Palani Balaya
{"title":"提高从生物质中提取的低成本硬碳的储存性能","authors":"Chen Wang ,&nbsp;Debasis Sen ,&nbsp;Vinod K. Aswal ,&nbsp;Lan Weiguang ,&nbsp;Palani Balaya","doi":"10.1016/j.cartre.2024.100415","DOIUrl":null,"url":null,"abstract":"<div><div>Hard Carbon is the most widely used negative electrode material for sodium-ion batteries today. Achieving high storage capacity and increasing the plateau capacity, as opposed to the sloping profile, are crucial for enhancing energy density of the full cells. While several publications address the synthesis of hard carbon, the economic viability for commercial scale-up hinges on the choice of precursors. In this study, we report the electrochemical properties of hard carbon derived from two biomass precursors, sugarcane waste (bagasse) and corn waste, and compare their performances with commercially available hard carbon. The hard carbon derived from bagasse delivers a capacity of 307 mAh/g at C/10 rate and retains approximately 234 mAh/g at 3C discharge rate. We integrate surface area, pore size distribution, Raman spectroscopy, small-angle X-ray and neutron scattering data to elucidate the sodium storage mechanism in these hard carbon samples. Correlated graphitic domains with hexagonal ordering along with fractal like agglomeration of the nanosheets are quantified. The high plateau capacity of the bagasse-derived hard carbon is attributed to the characteristic morphology and size distribution of the nanosheets and their nature of agglomeration.</div></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"17 ","pages":"Article 100415"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced storage performance of a low-cost hard carbon derived from biomass\",\"authors\":\"Chen Wang ,&nbsp;Debasis Sen ,&nbsp;Vinod K. Aswal ,&nbsp;Lan Weiguang ,&nbsp;Palani Balaya\",\"doi\":\"10.1016/j.cartre.2024.100415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hard Carbon is the most widely used negative electrode material for sodium-ion batteries today. Achieving high storage capacity and increasing the plateau capacity, as opposed to the sloping profile, are crucial for enhancing energy density of the full cells. While several publications address the synthesis of hard carbon, the economic viability for commercial scale-up hinges on the choice of precursors. In this study, we report the electrochemical properties of hard carbon derived from two biomass precursors, sugarcane waste (bagasse) and corn waste, and compare their performances with commercially available hard carbon. The hard carbon derived from bagasse delivers a capacity of 307 mAh/g at C/10 rate and retains approximately 234 mAh/g at 3C discharge rate. We integrate surface area, pore size distribution, Raman spectroscopy, small-angle X-ray and neutron scattering data to elucidate the sodium storage mechanism in these hard carbon samples. Correlated graphitic domains with hexagonal ordering along with fractal like agglomeration of the nanosheets are quantified. The high plateau capacity of the bagasse-derived hard carbon is attributed to the characteristic morphology and size distribution of the nanosheets and their nature of agglomeration.</div></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"17 \",\"pages\":\"Article 100415\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硬碳是目前钠离子电池最广泛使用的负极材料。实现高存储容量和提高高原容量(而不是斜坡容量)对于提高全电池的能量密度至关重要。虽然有多篇论文论述了硬碳的合成,但商业放大的经济可行性取决于前驱体的选择。在本研究中,我们报告了从甘蔗渣和玉米渣这两种生物质前驱体中提取的硬质碳的电化学特性,并将它们的性能与市售硬质碳进行了比较。从甘蔗渣中提取的硬质碳在 C/10 放电速率下的容量为 307 mAh/g,在 3C 放电速率下的容量约为 234 mAh/g。我们整合了表面积、孔径分布、拉曼光谱、小角 X 射线和中子散射数据,以阐明这些硬碳样品中的钠存储机制。我们对具有六方有序性的相关石墨畴以及纳米片的分形聚集进行了量化。甘蔗渣衍生硬碳的高原容量归因于纳米片的特征形态和尺寸分布及其聚结性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced storage performance of a low-cost hard carbon derived from biomass

Enhanced storage performance of a low-cost hard carbon derived from biomass
Hard Carbon is the most widely used negative electrode material for sodium-ion batteries today. Achieving high storage capacity and increasing the plateau capacity, as opposed to the sloping profile, are crucial for enhancing energy density of the full cells. While several publications address the synthesis of hard carbon, the economic viability for commercial scale-up hinges on the choice of precursors. In this study, we report the electrochemical properties of hard carbon derived from two biomass precursors, sugarcane waste (bagasse) and corn waste, and compare their performances with commercially available hard carbon. The hard carbon derived from bagasse delivers a capacity of 307 mAh/g at C/10 rate and retains approximately 234 mAh/g at 3C discharge rate. We integrate surface area, pore size distribution, Raman spectroscopy, small-angle X-ray and neutron scattering data to elucidate the sodium storage mechanism in these hard carbon samples. Correlated graphitic domains with hexagonal ordering along with fractal like agglomeration of the nanosheets are quantified. The high plateau capacity of the bagasse-derived hard carbon is attributed to the characteristic morphology and size distribution of the nanosheets and their nature of agglomeration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信