{"title":"任意域上非局部扩散模型的最小二乘傅立叶框架法","authors":"Mengxia Shen , Haiyong Wang","doi":"10.1016/j.camwa.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any <em>d</em> spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>N</mi><mo>)</mo></math></span> for 1<em>d</em> problems and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>N</mi><mo>)</mo></math></span> for 2<em>d</em> problems, compared with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> of the direct solvers, where <em>N</em> is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"175 ","pages":"Pages 433-446"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A least-squares Fourier frame method for nonlocal diffusion models on arbitrary domains\",\"authors\":\"Mengxia Shen , Haiyong Wang\",\"doi\":\"10.1016/j.camwa.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any <em>d</em> spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>N</mi><mo>)</mo></math></span> for 1<em>d</em> problems and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>N</mi><mo>)</mo></math></span> for 2<em>d</em> problems, compared with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> of the direct solvers, where <em>N</em> is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"175 \",\"pages\":\"Pages 433-446\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400467X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400467X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了一种最小二乘傅立叶框架方法,用于求解任意域上具有德里赫特体积约束的非局部扩散模型。框架而非基础的数学结构允许在不规则域上使用离散最小二乘近似,并施加非周期性边界条件。该方法继承了傅里叶谱方法中任意 d 空间维度非局部扩散算子傅里叶符号的一维积分表达式。由于框架中存在冗余,即使相应系统的条件极差,也可以通过直接求解器(如枢轴 QR 分解)实现高精度求解。与直接求解器的 O(N3)(其中 N 为自由度数)相比,AZ 算法的扩展提高了矩形线性系统的求解复杂度,1d 问题为 O(Nlog2N),2d 问题为 O(N2log2N)。我们通过大量的数值实验证明了所提方法的灵活性、快速收敛性和渐进兼容性。
A least-squares Fourier frame method for nonlocal diffusion models on arbitrary domains
We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any d spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to for 1d problems and for 2d problems, compared with of the direct solvers, where N is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).