任意域上非局部扩散模型的最小二乘傅立叶框架法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Mengxia Shen , Haiyong Wang
{"title":"任意域上非局部扩散模型的最小二乘傅立叶框架法","authors":"Mengxia Shen ,&nbsp;Haiyong Wang","doi":"10.1016/j.camwa.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any <em>d</em> spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for 1<em>d</em> problems and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for 2<em>d</em> problems, compared with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> of the direct solvers, where <em>N</em> is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A least-squares Fourier frame method for nonlocal diffusion models on arbitrary domains\",\"authors\":\"Mengxia Shen ,&nbsp;Haiyong Wang\",\"doi\":\"10.1016/j.camwa.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any <em>d</em> spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to <span><math><mi>O</mi><mo>(</mo><mi>N</mi><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for 1<em>d</em> problems and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for 2<em>d</em> problems, compared with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>N</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> of the direct solvers, where <em>N</em> is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089812212400467X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212400467X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种最小二乘傅立叶框架方法,用于求解任意域上具有德里赫特体积约束的非局部扩散模型。框架而非基础的数学结构允许在不规则域上使用离散最小二乘近似,并施加非周期性边界条件。该方法继承了傅里叶谱方法中任意 d 空间维度非局部扩散算子傅里叶符号的一维积分表达式。由于框架中存在冗余,即使相应系统的条件极差,也可以通过直接求解器(如枢轴 QR 分解)实现高精度求解。与直接求解器的 O(N3)(其中 N 为自由度数)相比,AZ 算法的扩展提高了矩形线性系统的求解复杂度,1d 问题为 O(Nlog2N),2d 问题为 O(N2log2N)。我们通过大量的数值实验证明了所提方法的灵活性、快速收敛性和渐进兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A least-squares Fourier frame method for nonlocal diffusion models on arbitrary domains
We introduce a least-squares Fourier frame method for solving nonlocal diffusion models with Dirichlet volume constraint on arbitrary domains. The mathematical structure of a frame rather than a basis allows using a discrete least-squares approximation on irregular domains and imposing non-periodic boundary conditions. The method has inherited the one-dimensional integral expression of Fourier symbols of the nonlocal diffusion operator from Fourier spectral methods for any d spatial dimensions. High precision of its solution can be achieved via a direct solver such as pivoted QR decomposition even though the corresponding system is extremely ill-conditioned, due to the redundancy in the frame. The extension of AZ algorithm improves the complexity of solving the rectangular linear system to O(Nlog2N) for 1d problems and O(N2log2N) for 2d problems, compared with O(N3) of the direct solvers, where N is the number of degrees of freedom. We present ample numerical experiments to show the flexibility, fast convergence and asymptotical compatibility of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信