{"title":"负温条件下淤泥动态特性参数的实验研究与修正","authors":"Haotian Guo , Yuli Lin , Jinming Li , Chao Sun","doi":"10.1016/j.sandf.2024.101530","DOIUrl":null,"url":null,"abstract":"<div><div>In order to examine the principles governing the variation of dynamic characteristic parameters, including the damping ratio, dynamic modulus, and frozen soil backbone curve, under different negative temperature conditions, silty clays sourced from the Changchun region were selected for the research. Dynamic loading studies were carried out on silty clays under different negative temperature conditions using a temperature-controlled GDS dynamic triaxial machine. The results demonstrated that the lower the temperature, the higher the dynamic stress required to achieve the same dynamic strain. The inverse of the dynamic modulus <span><math><mrow><mn>1</mn><mo>/</mo><msub><mi>E</mi><mi>d</mi></msub></mrow></math></span> is linearly related to the dynamic strain, and the intercept of the fitted line of the inverse of <span><math><mrow><mn>1</mn><mo>/</mo><msub><mi>E</mi><mi>d</mi></msub></mrow></math></span> decreases with decreasing temperature. The damping ratio and ability to absorb vibration waves decrease as the temperature drops. As the temperature decreases, the maximum dynamic modulus gradually increases, and the maximum damping ratio has the opposite trend. The temperature correction formulas for the maximum dynamic modulus and maximum damping ratio of silty clay are proposed by correlation analysis method based on test data.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and correction of dynamic characteristic parameters of silty clay under negative temperature conditions\",\"authors\":\"Haotian Guo , Yuli Lin , Jinming Li , Chao Sun\",\"doi\":\"10.1016/j.sandf.2024.101530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to examine the principles governing the variation of dynamic characteristic parameters, including the damping ratio, dynamic modulus, and frozen soil backbone curve, under different negative temperature conditions, silty clays sourced from the Changchun region were selected for the research. Dynamic loading studies were carried out on silty clays under different negative temperature conditions using a temperature-controlled GDS dynamic triaxial machine. The results demonstrated that the lower the temperature, the higher the dynamic stress required to achieve the same dynamic strain. The inverse of the dynamic modulus <span><math><mrow><mn>1</mn><mo>/</mo><msub><mi>E</mi><mi>d</mi></msub></mrow></math></span> is linearly related to the dynamic strain, and the intercept of the fitted line of the inverse of <span><math><mrow><mn>1</mn><mo>/</mo><msub><mi>E</mi><mi>d</mi></msub></mrow></math></span> decreases with decreasing temperature. The damping ratio and ability to absorb vibration waves decrease as the temperature drops. As the temperature decreases, the maximum dynamic modulus gradually increases, and the maximum damping ratio has the opposite trend. The temperature correction formulas for the maximum dynamic modulus and maximum damping ratio of silty clay are proposed by correlation analysis method based on test data.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080624001082\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001082","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental study and correction of dynamic characteristic parameters of silty clay under negative temperature conditions
In order to examine the principles governing the variation of dynamic characteristic parameters, including the damping ratio, dynamic modulus, and frozen soil backbone curve, under different negative temperature conditions, silty clays sourced from the Changchun region were selected for the research. Dynamic loading studies were carried out on silty clays under different negative temperature conditions using a temperature-controlled GDS dynamic triaxial machine. The results demonstrated that the lower the temperature, the higher the dynamic stress required to achieve the same dynamic strain. The inverse of the dynamic modulus is linearly related to the dynamic strain, and the intercept of the fitted line of the inverse of decreases with decreasing temperature. The damping ratio and ability to absorb vibration waves decrease as the temperature drops. As the temperature decreases, the maximum dynamic modulus gradually increases, and the maximum damping ratio has the opposite trend. The temperature correction formulas for the maximum dynamic modulus and maximum damping ratio of silty clay are proposed by correlation analysis method based on test data.
期刊介绍:
Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020.
Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.