{"title":"蓝色有机发光二极管的低电压开启","authors":"Hiroto Iwasaki , Yutaka Majima , Seiichiro Izawa","doi":"10.1016/j.synthmet.2024.117772","DOIUrl":null,"url":null,"abstract":"<div><div>The low-voltage operation of blue organic light-emitting diodes (OLEDs) is critical for reducing power consumption and improving device lifetime. This review briefly summarizes the history and origin of low-voltage electroluminescence and its realization in recent reports. In particular, upconversion OLEDs, which use the charge transfer state as an intermediate state to facilitate blue emission via triplet–triplet annihilation, present a promising solution. Thus, continued efforts aimed at reducing the driving voltage, including the exploration of new materials and device structures, are expected to significantly contribute to expanding the applications of blue OLEDs.</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117772"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-voltage turn-on in blue organic light-emitting diodes\",\"authors\":\"Hiroto Iwasaki , Yutaka Majima , Seiichiro Izawa\",\"doi\":\"10.1016/j.synthmet.2024.117772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low-voltage operation of blue organic light-emitting diodes (OLEDs) is critical for reducing power consumption and improving device lifetime. This review briefly summarizes the history and origin of low-voltage electroluminescence and its realization in recent reports. In particular, upconversion OLEDs, which use the charge transfer state as an intermediate state to facilitate blue emission via triplet–triplet annihilation, present a promising solution. Thus, continued efforts aimed at reducing the driving voltage, including the exploration of new materials and device structures, are expected to significantly contribute to expanding the applications of blue OLEDs.</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"309 \",\"pages\":\"Article 117772\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924002340\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002340","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-voltage turn-on in blue organic light-emitting diodes
The low-voltage operation of blue organic light-emitting diodes (OLEDs) is critical for reducing power consumption and improving device lifetime. This review briefly summarizes the history and origin of low-voltage electroluminescence and its realization in recent reports. In particular, upconversion OLEDs, which use the charge transfer state as an intermediate state to facilitate blue emission via triplet–triplet annihilation, present a promising solution. Thus, continued efforts aimed at reducing the driving voltage, including the exploration of new materials and device structures, are expected to significantly contribute to expanding the applications of blue OLEDs.
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.