Amotz Bar-Noy , Toni Böhnlein , David Peleg , Yingli Ran , Dror Rawitz
{"title":"外平面度序列的近似实现","authors":"Amotz Bar-Noy , Toni Böhnlein , David Peleg , Yingli Ran , Dror Rawitz","doi":"10.1016/j.jcss.2024.103588","DOIUrl":null,"url":null,"abstract":"<div><div>We study the question of whether a sequence <span><math><mi>d</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of positive integers is the degree sequence of some outerplanar graph <em>G</em>. If so, <em>G</em> is an outerplanar realization of <em>d</em> and <em>d</em> is an outerplanaric sequence. The case where <span><math><mo>∑</mo><mi>d</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> is easy, as <em>d</em> has a realization by a forest. In this paper, we consider the family <span><math><mi>D</mi></math></span> of all sequences <em>d</em> of even sum <span><math><mn>2</mn><mi>n</mi><mo>≤</mo><mo>∑</mo><mi>d</mi><mo>≤</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>6</mn><mo>−</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> is the number of <em>x</em>'s in <em>d</em>. We partition <span><math><mi>D</mi></math></span> into two disjoint subfamilies, <span><math><mi>D</mi><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi><mi>O</mi><mi>P</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>P</mi><mi>B</mi><mi>E</mi></mrow></msub></math></span>, such that every sequence in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi><mi>O</mi><mi>P</mi></mrow></msub></math></span> is provably non-outerplanaric, and every sequence in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>P</mi><mi>B</mi><mi>E</mi></mrow></msub></math></span> is given a realizing graph <em>G</em> enjoying a 2-page book embedding (and moreover, one of the pages is also bipartite).</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103588"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate realizations for outerplanaric degree sequences\",\"authors\":\"Amotz Bar-Noy , Toni Böhnlein , David Peleg , Yingli Ran , Dror Rawitz\",\"doi\":\"10.1016/j.jcss.2024.103588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the question of whether a sequence <span><math><mi>d</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of positive integers is the degree sequence of some outerplanar graph <em>G</em>. If so, <em>G</em> is an outerplanar realization of <em>d</em> and <em>d</em> is an outerplanaric sequence. The case where <span><math><mo>∑</mo><mi>d</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn></math></span> is easy, as <em>d</em> has a realization by a forest. In this paper, we consider the family <span><math><mi>D</mi></math></span> of all sequences <em>d</em> of even sum <span><math><mn>2</mn><mi>n</mi><mo>≤</mo><mo>∑</mo><mi>d</mi><mo>≤</mo><mn>4</mn><mi>n</mi><mo>−</mo><mn>6</mn><mo>−</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, where <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> is the number of <em>x</em>'s in <em>d</em>. We partition <span><math><mi>D</mi></math></span> into two disjoint subfamilies, <span><math><mi>D</mi><mo>=</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi><mi>O</mi><mi>P</mi></mrow></msub><mo>∪</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>P</mi><mi>B</mi><mi>E</mi></mrow></msub></math></span>, such that every sequence in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>N</mi><mi>O</mi><mi>P</mi></mrow></msub></math></span> is provably non-outerplanaric, and every sequence in <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn><mi>P</mi><mi>B</mi><mi>E</mi></mrow></msub></math></span> is given a realizing graph <em>G</em> enjoying a 2-page book embedding (and moreover, one of the pages is also bipartite).</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103588\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000837\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000837","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的问题是:正整数序列 d=(d1,...,dn) 是否是某个外平面图 G 的度数序列?如果是,则 G 是 d 的外平面实现,d 是外平面序列。∑d≤2n-2的情况很容易,因为d有一个森林的实现。在本文中,我们考虑所有偶数和为 2n≤∑d≤4n-6-2ω1 的序列 d 的族 D,其中 ωx 是 d 中 x 的个数。我们将 D 分成两个互不相交的子系列,D=DNOP∪D2PBE,这样 DNOP 中的每个序列都是可证明的非平面外序列,而 D2PBE 中的每个序列都有一个实现图 G,享有两页书的嵌入(此外,其中一页也是双向的)。
Approximate realizations for outerplanaric degree sequences
We study the question of whether a sequence of positive integers is the degree sequence of some outerplanar graph G. If so, G is an outerplanar realization of d and d is an outerplanaric sequence. The case where is easy, as d has a realization by a forest. In this paper, we consider the family of all sequences d of even sum , where is the number of x's in d. We partition into two disjoint subfamilies, , such that every sequence in is provably non-outerplanaric, and every sequence in is given a realizing graph G enjoying a 2-page book embedding (and moreover, one of the pages is also bipartite).
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.