非循环匹配的参数化结果及其对相关问题的影响

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Juhi Chaudhary , Meirav Zehavi
{"title":"非循环匹配的参数化结果及其对相关问题的影响","authors":"Juhi Chaudhary ,&nbsp;Meirav Zehavi","doi":"10.1016/j.jcss.2024.103599","DOIUrl":null,"url":null,"abstract":"<div><div>A matching <em>M</em> in a graph <em>G</em> is an <em>acyclic matching</em> if the subgraph of <em>G</em> induced by the endpoints of the edges of <em>M</em> is a forest. Given a graph <em>G</em> and <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>, <span>Acyclic Matching</span> asks whether <em>G</em> has an acyclic matching of <em>size</em> at least <em>ℓ</em>. In this paper, we prove that assuming <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>⊈</mo><mi>FPT</mi></math></span>, there does not exist any <span><math><mi>FPT</mi></math></span>-approximation algorithm for <span>Acyclic Matching</span> that approximates it within a constant factor when parameterized by <em>ℓ</em>. Our reduction also asserts <span><math><mi>FPT</mi></math></span>-inapproximability for <span>Induced Matching</span> and <span>Uniquely Restricted Matching</span>. We also consider three below-guarantee parameters for <span>Acyclic Matching</span>, viz. <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>ℓ</mi></math></span>, <span><math><mrow><mi>MM</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>ℓ</mi></math></span>, and <span><math><mrow><mi>IS</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>ℓ</mi></math></span>, where <span><math><mi>n</mi><mo>=</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>MM</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the <em>matching number</em>, and <span><math><mi>IS</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the <em>independence number</em> of <em>G</em>. Also, we show that <span>Acyclic Matching</span> does not exhibit a polynomial kernel with respect to vertex cover number (or vertex deletion distance to clique) plus the size of the matching unless <span><math><mrow><mi>NP</mi></mrow><mo>⊆</mo><mrow><mi>coNP</mi></mrow><mo>/</mo><mrow><mi>poly</mi></mrow></math></span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103599"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized results on acyclic matchings with implications for related problems\",\"authors\":\"Juhi Chaudhary ,&nbsp;Meirav Zehavi\",\"doi\":\"10.1016/j.jcss.2024.103599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A matching <em>M</em> in a graph <em>G</em> is an <em>acyclic matching</em> if the subgraph of <em>G</em> induced by the endpoints of the edges of <em>M</em> is a forest. Given a graph <em>G</em> and <span><math><mi>ℓ</mi><mo>∈</mo><mi>N</mi></math></span>, <span>Acyclic Matching</span> asks whether <em>G</em> has an acyclic matching of <em>size</em> at least <em>ℓ</em>. In this paper, we prove that assuming <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>⊈</mo><mi>FPT</mi></math></span>, there does not exist any <span><math><mi>FPT</mi></math></span>-approximation algorithm for <span>Acyclic Matching</span> that approximates it within a constant factor when parameterized by <em>ℓ</em>. Our reduction also asserts <span><math><mi>FPT</mi></math></span>-inapproximability for <span>Induced Matching</span> and <span>Uniquely Restricted Matching</span>. We also consider three below-guarantee parameters for <span>Acyclic Matching</span>, viz. <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mi>ℓ</mi></math></span>, <span><math><mrow><mi>MM</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>ℓ</mi></math></span>, and <span><math><mrow><mi>IS</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>ℓ</mi></math></span>, where <span><math><mi>n</mi><mo>=</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, <span><math><mi>MM</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the <em>matching number</em>, and <span><math><mi>IS</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the <em>independence number</em> of <em>G</em>. Also, we show that <span>Acyclic Matching</span> does not exhibit a polynomial kernel with respect to vertex cover number (or vertex deletion distance to clique) plus the size of the matching unless <span><math><mrow><mi>NP</mi></mrow><mo>⊆</mo><mrow><mi>coNP</mi></mrow><mo>/</mo><mrow><mi>poly</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103599\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000941\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000941","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

如果 M 的边的端点所诱导的 G 子图是一个森林,那么图 G 中的匹配 M 就是非循环匹配。给定一个图 G 和 ℓ∈N,非循环匹配问 G 是否有大小至少为 ℓ 的非循环匹配。在本文中,我们证明了假设 W[1]⊈FPT 时,不存在任何 FPT 近似算法,可以在以ℓ 为参数时,以常数因子内逼近 Acyclic Matching。我们的还原也证明了诱导匹配和唯一限制匹配的 FPT 近似性。我们还考虑了 Acyclic Matching 的三个低于保证的参数,即 n2-ℓ、MM(G)-ℓ 和 IS(G)-ℓ,其中 n=V(G), MM(G) 是匹配数,IS(G) 是 G 的独立数。此外,我们还证明,除非 NP⊆coNP/poly,否则无循环匹配并不表现出关于顶点覆盖数(或顶点到小块的删除距离)加上匹配大小的多项式内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized results on acyclic matchings with implications for related problems
A matching M in a graph G is an acyclic matching if the subgraph of G induced by the endpoints of the edges of M is a forest. Given a graph G and N, Acyclic Matching asks whether G has an acyclic matching of size at least . In this paper, we prove that assuming W[1]FPT, there does not exist any FPT-approximation algorithm for Acyclic Matching that approximates it within a constant factor when parameterized by . Our reduction also asserts FPT-inapproximability for Induced Matching and Uniquely Restricted Matching. We also consider three below-guarantee parameters for Acyclic Matching, viz. n2, MM(G), and IS(G), where n=V(G), MM(G) is the matching number, and IS(G) is the independence number of G. Also, we show that Acyclic Matching does not exhibit a polynomial kernel with respect to vertex cover number (or vertex deletion distance to clique) plus the size of the matching unless NPcoNP/poly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信