GFRP 复合材料增强 PVC 管的挤压行为:实验测试和数值模拟

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Khaled Yousif , Aamir Dean , Elsadig Mahdi
{"title":"GFRP 复合材料增强 PVC 管的挤压行为:实验测试和数值模拟","authors":"Khaled Yousif ,&nbsp;Aamir Dean ,&nbsp;Elsadig Mahdi","doi":"10.1016/j.compscitech.2024.110903","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces glass fiber reinforced polymer (GFRP)-reinforced Polyvinyl Chloride (PVC) tubes, both corrugated and non-corrugated, designed as energy absorber devices. The PVC tubes were externally and internally reinforced with GFRP composite oriented at <span><math><mrow><mo>±</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> and subjected to quasi-static axial compression tests. Results indicated that all reinforced tubes exhibited significantly higher load-bearing capacity, energy absorption (EA) capability, and crushing force efficiency (CFE) compared to standard PVC tubes. Among the tested specimens, externally reinforced corrugated tubes demonstrated the highest specific energy absorption (SEA), surpassing other configurations by 17.5 kJ/kg when considering both pre- and post-crushing stages combined. However, these corrugated specimens showed instability during crushing, reflected in poor instantaneous crush force efficiency (iCFE) and the lowest iCFE among the composite tubes, with an average decrease of 43.59%.</div><div>The corrugation notably increased the initial peak load, enhancing energy absorption in the pre-crushing stage without compromising the stability of crush force efficiency. Additionally, the combination of external and internal reinforcement significantly improved CFE and iCFE. Consequently, the PVC tubes combining corrugation with both external and internal reinforcement emerged as the best-performing configuration among all tested tubes.</div><div>Furthermore, a 3D Finite Element (FE) model was developed using <span>ABAQUS</span> FE code with user-defined subroutines to simulate the crushing process. The constitutive models and numerical procedures employed are detailed. The FE model’s predictions showed a satisfactory correlation with experimental results, providing valuable insights into the crushing mechanics and offering a predictive tool for future design optimizations.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110903"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crushing behavior of GFRP composite-reinforced PVC tubes: Experimental testing and numerical simulation\",\"authors\":\"Khaled Yousif ,&nbsp;Aamir Dean ,&nbsp;Elsadig Mahdi\",\"doi\":\"10.1016/j.compscitech.2024.110903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces glass fiber reinforced polymer (GFRP)-reinforced Polyvinyl Chloride (PVC) tubes, both corrugated and non-corrugated, designed as energy absorber devices. The PVC tubes were externally and internally reinforced with GFRP composite oriented at <span><math><mrow><mo>±</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> and subjected to quasi-static axial compression tests. Results indicated that all reinforced tubes exhibited significantly higher load-bearing capacity, energy absorption (EA) capability, and crushing force efficiency (CFE) compared to standard PVC tubes. Among the tested specimens, externally reinforced corrugated tubes demonstrated the highest specific energy absorption (SEA), surpassing other configurations by 17.5 kJ/kg when considering both pre- and post-crushing stages combined. However, these corrugated specimens showed instability during crushing, reflected in poor instantaneous crush force efficiency (iCFE) and the lowest iCFE among the composite tubes, with an average decrease of 43.59%.</div><div>The corrugation notably increased the initial peak load, enhancing energy absorption in the pre-crushing stage without compromising the stability of crush force efficiency. Additionally, the combination of external and internal reinforcement significantly improved CFE and iCFE. Consequently, the PVC tubes combining corrugation with both external and internal reinforcement emerged as the best-performing configuration among all tested tubes.</div><div>Furthermore, a 3D Finite Element (FE) model was developed using <span>ABAQUS</span> FE code with user-defined subroutines to simulate the crushing process. The constitutive models and numerical procedures employed are detailed. The FE model’s predictions showed a satisfactory correlation with experimental results, providing valuable insights into the crushing mechanics and offering a predictive tool for future design optimizations.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110903\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004731\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004731","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了玻璃纤维增强聚合物(GFRP)增强聚氯乙烯(PVC)管,包括波纹管和非波纹管,设计用作能量吸收装置。用取向为 ±45∘ 的 GFRP 复合材料对 PVC 管进行外部和内部增强,并对其进行准静态轴向压缩试验。结果表明,与标准聚氯乙烯管相比,所有增强管的承载能力、能量吸收(EA)能力和破碎力效率(CFE)都明显更高。在测试的试样中,外部加固的波纹管表现出最高的比能量吸收能力(SEA),在考虑破碎前和破碎后阶段的情况下,比其他结构的试样高出 17.5 kJ/kg。然而,这些波纹试样在破碎过程中表现出不稳定性,表现为瞬时破碎力效率(iCFE)较差,在复合管中 iCFE 最低,平均下降 43.59%。此外,外部和内部加固的结合也显著提高了 CFE 和 iCFE。此外,还使用 ABAQUS FE 代码和用户自定义子程序开发了三维有限元(FE)模型,以模拟挤压过程。详细介绍了所采用的构成模型和数值计算程序。有限元模型的预测结果与实验结果之间的相关性令人满意,为破碎力学提供了宝贵的见解,并为未来的设计优化提供了预测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Crushing behavior of GFRP composite-reinforced PVC tubes: Experimental testing and numerical simulation

Crushing behavior of GFRP composite-reinforced PVC tubes: Experimental testing and numerical simulation
This paper introduces glass fiber reinforced polymer (GFRP)-reinforced Polyvinyl Chloride (PVC) tubes, both corrugated and non-corrugated, designed as energy absorber devices. The PVC tubes were externally and internally reinforced with GFRP composite oriented at ±45 and subjected to quasi-static axial compression tests. Results indicated that all reinforced tubes exhibited significantly higher load-bearing capacity, energy absorption (EA) capability, and crushing force efficiency (CFE) compared to standard PVC tubes. Among the tested specimens, externally reinforced corrugated tubes demonstrated the highest specific energy absorption (SEA), surpassing other configurations by 17.5 kJ/kg when considering both pre- and post-crushing stages combined. However, these corrugated specimens showed instability during crushing, reflected in poor instantaneous crush force efficiency (iCFE) and the lowest iCFE among the composite tubes, with an average decrease of 43.59%.
The corrugation notably increased the initial peak load, enhancing energy absorption in the pre-crushing stage without compromising the stability of crush force efficiency. Additionally, the combination of external and internal reinforcement significantly improved CFE and iCFE. Consequently, the PVC tubes combining corrugation with both external and internal reinforcement emerged as the best-performing configuration among all tested tubes.
Furthermore, a 3D Finite Element (FE) model was developed using ABAQUS FE code with user-defined subroutines to simulate the crushing process. The constitutive models and numerical procedures employed are detailed. The FE model’s predictions showed a satisfactory correlation with experimental results, providing valuable insights into the crushing mechanics and offering a predictive tool for future design optimizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信