{"title":"实现作为超几何对称的列超拉 G(3) 和 F(4)","authors":"Boris Kruglikov, Andreu Llabrés","doi":"10.1016/j.jalgebra.2024.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>For every parabolic subgroup <em>P</em> of a Lie supergroup <em>G</em> the homogeneous superspace <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> carries a <em>G</em>-invariant supergeometry. We address the problem whether <span><math><mi>g</mi><mo>=</mo><mrow><mi>Lie</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximal (local and global) symmetry of this supergeometry in the case of exceptional Lie superalgebras <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>. Our approach is to consider the negatively graded Lie superalgebras for every choice of parabolic, and to compute the Tanaka-Weisfeiler prolongations, with reduction of the structure group when required (2 resp 3 special cases), thus realizing <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> as symmetries of supergeometries. This gives 19 inequivalent <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-supergeometries and 55 inequivalent <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>-supergeometries, in majority of cases (17 resp 52 cases) those being encoded as vector superdistributions. We describe those supergeometries and realize supersymmetry explicitly.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"664 ","pages":"Pages 468-497"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realization of Lie superalgebras G(3) and F(4) as symmetries of supergeometries\",\"authors\":\"Boris Kruglikov, Andreu Llabrés\",\"doi\":\"10.1016/j.jalgebra.2024.08.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For every parabolic subgroup <em>P</em> of a Lie supergroup <em>G</em> the homogeneous superspace <span><math><mi>G</mi><mo>/</mo><mi>P</mi></math></span> carries a <em>G</em>-invariant supergeometry. We address the problem whether <span><math><mi>g</mi><mo>=</mo><mrow><mi>Lie</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the maximal (local and global) symmetry of this supergeometry in the case of exceptional Lie superalgebras <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>. Our approach is to consider the negatively graded Lie superalgebras for every choice of parabolic, and to compute the Tanaka-Weisfeiler prolongations, with reduction of the structure group when required (2 resp 3 special cases), thus realizing <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span> and <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span> as symmetries of supergeometries. This gives 19 inequivalent <span><math><mi>G</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>-supergeometries and 55 inequivalent <span><math><mi>F</mi><mo>(</mo><mn>4</mn><mo>)</mo></math></span>-supergeometries, in majority of cases (17 resp 52 cases) those being encoded as vector superdistributions. We describe those supergeometries and realize supersymmetry explicitly.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"664 \",\"pages\":\"Pages 468-497\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005088\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005088","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Realization of Lie superalgebras G(3) and F(4) as symmetries of supergeometries
For every parabolic subgroup P of a Lie supergroup G the homogeneous superspace carries a G-invariant supergeometry. We address the problem whether is the maximal (local and global) symmetry of this supergeometry in the case of exceptional Lie superalgebras and . Our approach is to consider the negatively graded Lie superalgebras for every choice of parabolic, and to compute the Tanaka-Weisfeiler prolongations, with reduction of the structure group when required (2 resp 3 special cases), thus realizing and as symmetries of supergeometries. This gives 19 inequivalent -supergeometries and 55 inequivalent -supergeometries, in majority of cases (17 resp 52 cases) those being encoded as vector superdistributions. We describe those supergeometries and realize supersymmetry explicitly.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.