每个霍普夫-伽罗瓦对应关系都是双射的类型分类

Pub Date : 2024-10-16 DOI:10.1016/j.jalgebra.2024.10.010
Lorenzo Stefanello , Cindy Tsang Sin Yi
{"title":"每个霍普夫-伽罗瓦对应关系都是双射的类型分类","authors":"Lorenzo Stefanello ,&nbsp;Cindy Tsang Sin Yi","doi":"10.1016/j.jalgebra.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> be any finite Galois extension with Galois group <em>G</em>. It is known by Chase and Sweedler that the Hopf–Galois correspondence is injective for every Hopf–Galois structure on <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span>, but it need not be bijective in general. Hopf–Galois structures are known to be related to skew braces, and recently, the first-named author and Trappeniers proposed a new version of this connection with the property that the intermediate fields of <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> in the image of the Hopf–Galois correspondence are in bijection with the left ideals of the associated skew brace. As an application, they classified the groups <em>G</em> for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure on any <em>G</em>-Galois extension. In this paper, using a similar approach, we shall classify the groups <em>N</em> for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure of type <em>N</em> on any Galois extension.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of the types for which every Hopf–Galois correspondence is bijective\",\"authors\":\"Lorenzo Stefanello ,&nbsp;Cindy Tsang Sin Yi\",\"doi\":\"10.1016/j.jalgebra.2024.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> be any finite Galois extension with Galois group <em>G</em>. It is known by Chase and Sweedler that the Hopf–Galois correspondence is injective for every Hopf–Galois structure on <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span>, but it need not be bijective in general. Hopf–Galois structures are known to be related to skew braces, and recently, the first-named author and Trappeniers proposed a new version of this connection with the property that the intermediate fields of <span><math><mi>L</mi><mo>/</mo><mi>K</mi></math></span> in the image of the Hopf–Galois correspondence are in bijection with the left ideals of the associated skew brace. As an application, they classified the groups <em>G</em> for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure on any <em>G</em>-Galois extension. In this paper, using a similar approach, we shall classify the groups <em>N</em> for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure of type <em>N</em> on any Galois extension.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 L/K 是任何具有伽罗瓦群 G 的有限伽罗瓦扩展。Chase 和 Sweedler 已知,对于 L/K 上的每一个 Hopf-Galois 结构,Hopf-Galois 对应都是注入式的,但在一般情况下不一定是双射的。众所周知,Hopf-Galois 结构与斜撑相关,最近,第一作者和 Trappeniers 提出了这一联系的新版本,其性质是在 Hopf-Galois 对应的映像中,L/K 的中间域与相关斜撑的左理想是双射的。作为一种应用,他们对任何 G-Galois 扩展上的每个 Hopf-Galois 结构的 Hopf-Galois 对应都是双射的群 G 进行了分类。在本文中,我们将采用类似的方法,对 N 群进行分类,对于这些群,在任何伽罗瓦扩展上的每一个 N 型 Hopf-Galois 结构,Hopf-Galois 对应都是双射的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Classification of the types for which every Hopf–Galois correspondence is bijective
Let L/K be any finite Galois extension with Galois group G. It is known by Chase and Sweedler that the Hopf–Galois correspondence is injective for every Hopf–Galois structure on L/K, but it need not be bijective in general. Hopf–Galois structures are known to be related to skew braces, and recently, the first-named author and Trappeniers proposed a new version of this connection with the property that the intermediate fields of L/K in the image of the Hopf–Galois correspondence are in bijection with the left ideals of the associated skew brace. As an application, they classified the groups G for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure on any G-Galois extension. In this paper, using a similar approach, we shall classify the groups N for which the Hopf–Galois correspondence is bijective for every Hopf–Galois structure of type N on any Galois extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信