半简单李代数的窄和宽正则子代数

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.09.027
Andrew Douglas , Joe Repka
{"title":"半简单李代数的窄和宽正则子代数","authors":"Andrew Douglas ,&nbsp;Joe Repka","doi":"10.1016/j.jalgebra.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>A subalgebra of a semisimple Lie algebra is <em>wide</em> if every simple module of the semisimple Lie algebra remains indecomposable when restricted to the subalgebra. A subalgebra is <em>narrow</em> if the restrictions of all non-trivial simple modules to the subalgebra have proper decompositions. A semisimple Lie algebra is <em>regular extreme</em> if any regular subalgebra of the semisimple Lie algebra is either narrow or wide. We determine necessary and sufficient conditions for a simple module of a semisimple Lie algebra to remain indecomposable when restricted to a regular subalgebra. As a natural consequence, we establish necessary and sufficient conditions for regular subalgebras to be wide, a result which has already been established by Panyushev for essentially all regular solvable subalgebras <span><span>[10]</span></span>. Next, we show that establishing whether or not a regular subalgebra of a simple Lie algebra is wide does not require consideration of all simple modules. It is necessary and sufficient to only consider the adjoint representation. Then, we show that all simple Lie algebras are regular extreme. Finally, we show that no non-simple, semisimple Lie algebra is regular extreme.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow and wide regular subalgebras of semisimple Lie algebras\",\"authors\":\"Andrew Douglas ,&nbsp;Joe Repka\",\"doi\":\"10.1016/j.jalgebra.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subalgebra of a semisimple Lie algebra is <em>wide</em> if every simple module of the semisimple Lie algebra remains indecomposable when restricted to the subalgebra. A subalgebra is <em>narrow</em> if the restrictions of all non-trivial simple modules to the subalgebra have proper decompositions. A semisimple Lie algebra is <em>regular extreme</em> if any regular subalgebra of the semisimple Lie algebra is either narrow or wide. We determine necessary and sufficient conditions for a simple module of a semisimple Lie algebra to remain indecomposable when restricted to a regular subalgebra. As a natural consequence, we establish necessary and sufficient conditions for regular subalgebras to be wide, a result which has already been established by Panyushev for essentially all regular solvable subalgebras <span><span>[10]</span></span>. Next, we show that establishing whether or not a regular subalgebra of a simple Lie algebra is wide does not require consideration of all simple modules. It is necessary and sufficient to only consider the adjoint representation. Then, we show that all simple Lie algebras are regular extreme. Finally, we show that no non-simple, semisimple Lie algebra is regular extreme.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果半简单李代数的每个简单模块在限制到子代数时都保持不可分解,那么半简单李代数的子代数就是宽代数。如果所有非琐简单模块对子代数的限制都有适当的分解,则子代数是窄的。如果半简单李代数的任何正则子代数不是窄就是宽,那么半简单李代数就是正则极值。我们确定了半简单李代数的简单模在限制于正则子代数时保持不可分解的必要条件和充分条件。作为一个自然结果,我们确定了正则子代数为宽代数的必要和充分条件,而这一结果已由帕尤舍夫(Panyushev)为基本上所有正则可解子代数确定[10]。接下来,我们将证明,确定一个简单李代数的正则子代数是否宽并不需要考虑所有简单模块。只需考虑邻接表示即可。然后,我们证明所有简单李代数都是正则极值。最后,我们证明没有一个非简单、半简单的李代数是正则极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Narrow and wide regular subalgebras of semisimple Lie algebras
A subalgebra of a semisimple Lie algebra is wide if every simple module of the semisimple Lie algebra remains indecomposable when restricted to the subalgebra. A subalgebra is narrow if the restrictions of all non-trivial simple modules to the subalgebra have proper decompositions. A semisimple Lie algebra is regular extreme if any regular subalgebra of the semisimple Lie algebra is either narrow or wide. We determine necessary and sufficient conditions for a simple module of a semisimple Lie algebra to remain indecomposable when restricted to a regular subalgebra. As a natural consequence, we establish necessary and sufficient conditions for regular subalgebras to be wide, a result which has already been established by Panyushev for essentially all regular solvable subalgebras [10]. Next, we show that establishing whether or not a regular subalgebra of a simple Lie algebra is wide does not require consideration of all simple modules. It is necessary and sufficient to only consider the adjoint representation. Then, we show that all simple Lie algebras are regular extreme. Finally, we show that no non-simple, semisimple Lie algebra is regular extreme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信