IGG(χ):非结构网格上一种新的简单隐式梯度方案

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Vishnu Prakash K, Ganesh Natarajan
{"title":"IGG(χ):非结构网格上一种新的简单隐式梯度方案","authors":"Vishnu Prakash K,&nbsp;Ganesh Natarajan","doi":"10.1016/j.camwa.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><div>A new and simple implicit Green-Gauss gradient (IGG) scheme for unstructured meshes is proposed exploiting the ideas from the linearity-preserving U-MUSCL scheme to define values at cell faces. We construct an implicit one-parameter family of gradient schemes referred to as IGG(<em>χ</em>) where <em>χ</em> is a free-parameter. The computed gradients are at least first-order accurate on generic polygonal meshes and second-order accurate on uniform Cartesian meshes except when <span><math><mi>χ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for which fourth-order accuracy can be realised. A theoretical analysis is carried out to understand the effect of the control parameter <em>χ</em> on accuracy and resolution of the gradients and numerical experiments on various mesh topologies confirm the theoretical findings. Finite volume simulations of the Poisson and Euler equations on Cartesian and unstructured meshes further highlight that the IGG(<em>χ</em>) is a versatile gradient scheme that gives second-order accurate solutions with the iterative convergence of the solver dependent on the choice of the <em>χ</em> parameter. The framework described in this study can also be employed to devise an implicit least-squares gradient scheme that applies equally well to unstructured finite volume and meshfree solvers.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IGG(χ): A new and simple implicit gradient scheme on unstructured meshes\",\"authors\":\"Vishnu Prakash K,&nbsp;Ganesh Natarajan\",\"doi\":\"10.1016/j.camwa.2024.10.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new and simple implicit Green-Gauss gradient (IGG) scheme for unstructured meshes is proposed exploiting the ideas from the linearity-preserving U-MUSCL scheme to define values at cell faces. We construct an implicit one-parameter family of gradient schemes referred to as IGG(<em>χ</em>) where <em>χ</em> is a free-parameter. The computed gradients are at least first-order accurate on generic polygonal meshes and second-order accurate on uniform Cartesian meshes except when <span><math><mi>χ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>3</mn></math></span> for which fourth-order accuracy can be realised. A theoretical analysis is carried out to understand the effect of the control parameter <em>χ</em> on accuracy and resolution of the gradients and numerical experiments on various mesh topologies confirm the theoretical findings. Finite volume simulations of the Poisson and Euler equations on Cartesian and unstructured meshes further highlight that the IGG(<em>χ</em>) is a versatile gradient scheme that gives second-order accurate solutions with the iterative convergence of the solver dependent on the choice of the <em>χ</em> parameter. The framework described in this study can also be employed to devise an implicit least-squares gradient scheme that applies equally well to unstructured finite volume and meshfree solvers.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004656\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004656","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们利用线性保留 U-MUSCL 方案的思想,为非结构网格提出了一种新的简单隐式格林-高斯梯度(IGG)方案,用于定义单元面的值。我们构建了一个隐式单参数梯度方案族,称为 IGG(χ),其中 χ 是一个自由参数。计算出的梯度在一般多边形网格上至少是一阶精度,而在均匀笛卡尔网格上则是二阶精度,除非当 χ=1/3 时可以达到四阶精度。为了解控制参数 χ 对精度和梯度分辨率的影响,我们进行了理论分析,并在各种网格拓扑结构上进行了数值实验,证实了理论结论。在笛卡尔网格和非结构网格上对泊松方程和欧拉方程进行的有限体积模拟进一步凸显了 IGG(χ) 是一种多功能梯度方案,可提供二阶精确解,求解器的迭代收敛取决于 χ 参数的选择。本研究中描述的框架也可用于设计隐式最小二乘梯度方案,该方案同样适用于非结构化有限体积和无网格求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IGG(χ): A new and simple implicit gradient scheme on unstructured meshes
A new and simple implicit Green-Gauss gradient (IGG) scheme for unstructured meshes is proposed exploiting the ideas from the linearity-preserving U-MUSCL scheme to define values at cell faces. We construct an implicit one-parameter family of gradient schemes referred to as IGG(χ) where χ is a free-parameter. The computed gradients are at least first-order accurate on generic polygonal meshes and second-order accurate on uniform Cartesian meshes except when χ=1/3 for which fourth-order accuracy can be realised. A theoretical analysis is carried out to understand the effect of the control parameter χ on accuracy and resolution of the gradients and numerical experiments on various mesh topologies confirm the theoretical findings. Finite volume simulations of the Poisson and Euler equations on Cartesian and unstructured meshes further highlight that the IGG(χ) is a versatile gradient scheme that gives second-order accurate solutions with the iterative convergence of the solver dependent on the choice of the χ parameter. The framework described in this study can also be employed to devise an implicit least-squares gradient scheme that applies equally well to unstructured finite volume and meshfree solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信