关于具有维布伦点的小型斯坦纳三重系统的数量

IF 0.7 3区 数学 Q2 MATHEMATICS
Giuseppe Filippone , Mario Galici
{"title":"关于具有维布伦点的小型斯坦纳三重系统的数量","authors":"Giuseppe Filippone ,&nbsp;Mario Galici","doi":"10.1016/j.disc.2024.114294","DOIUrl":null,"url":null,"abstract":"<div><div>The concept of <em>Schreier extensions</em> of loops was introduced in the general case in <span><span>[11]</span></span> and, more recently, it has been explored in the context of Steiner loops in <span><span>[6]</span></span>. In the latter case, it gives a powerful method for constructing Steiner triple systems containing Veblen points. Counting all Steiner triple systems of order <em>v</em> is an open problem for <span><math><mi>v</mi><mo>&gt;</mo><mn>21</mn></math></span>. In this paper, we investigate the number of Steiner triple systems of order 19, 27 and 31 containing Veblen points and we present some examples.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114294"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of small Steiner triple systems with Veblen points\",\"authors\":\"Giuseppe Filippone ,&nbsp;Mario Galici\",\"doi\":\"10.1016/j.disc.2024.114294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The concept of <em>Schreier extensions</em> of loops was introduced in the general case in <span><span>[11]</span></span> and, more recently, it has been explored in the context of Steiner loops in <span><span>[6]</span></span>. In the latter case, it gives a powerful method for constructing Steiner triple systems containing Veblen points. Counting all Steiner triple systems of order <em>v</em> is an open problem for <span><math><mi>v</mi><mo>&gt;</mo><mn>21</mn></math></span>. In this paper, we investigate the number of Steiner triple systems of order 19, 27 and 31 containing Veblen points and we present some examples.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114294\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004254\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004254","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在一般情况下,[11] 引入了循环的施赖尔扩展概念,最近,[6] 又在斯坦纳循环的背景下对其进行了探索。在后一种情况下,它为构建包含维布伦点的斯坦纳三重系统提供了一种强有力的方法。对于 v>21 而言,计算所有 v 阶的斯坦纳三重系统是一个未决问题。在本文中,我们研究了含有 Veblen 点的 19、27 和 31 阶 Steiner 三重系统的数量,并给出了一些示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of small Steiner triple systems with Veblen points
The concept of Schreier extensions of loops was introduced in the general case in [11] and, more recently, it has been explored in the context of Steiner loops in [6]. In the latter case, it gives a powerful method for constructing Steiner triple systems containing Veblen points. Counting all Steiner triple systems of order v is an open problem for v>21. In this paper, we investigate the number of Steiner triple systems of order 19, 27 and 31 containing Veblen points and we present some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信