关于正强度点涡旋随边界塌缩的动力学问题

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Martin Donati , Ludovic Godard-Cadillac , Dragoş Iftimie
{"title":"关于正强度点涡旋随边界塌缩的动力学问题","authors":"Martin Donati ,&nbsp;Ludovic Godard-Cadillac ,&nbsp;Dragoş Iftimie","doi":"10.1016/j.physd.2024.134402","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the point-vortex dynamics with positive intensities. We show that in the half-plane and in a disk, collapses of point vortices with the boundary in finite time are impossible, hence the solution of the dynamics is global in time. We also give some necessary conditions for the existence of collapses with the boundary in general smooth bounded domains, in particular, that the trajectory of at least one point vortex has no limit. Some minor results are obtained with unsigned intensities.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of point vortices with positive intensities collapsing with the boundary\",\"authors\":\"Martin Donati ,&nbsp;Ludovic Godard-Cadillac ,&nbsp;Dragoş Iftimie\",\"doi\":\"10.1016/j.physd.2024.134402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the point-vortex dynamics with positive intensities. We show that in the half-plane and in a disk, collapses of point vortices with the boundary in finite time are impossible, hence the solution of the dynamics is global in time. We also give some necessary conditions for the existence of collapses with the boundary in general smooth bounded domains, in particular, that the trajectory of at least one point vortex has no limit. Some minor results are obtained with unsigned intensities.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400352X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400352X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有正强度的点涡旋动力学。我们证明,在半平面和圆盘中,点涡旋不可能在有限时间内与边界塌缩,因此动力学解在时间上是全局的。我们还给出了在一般光滑有界域中边界塌陷存在的一些必要条件,特别是至少一个点涡旋的轨迹没有极限。对于无符号强度,我们得到了一些次要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the dynamics of point vortices with positive intensities collapsing with the boundary
In this paper, we study the point-vortex dynamics with positive intensities. We show that in the half-plane and in a disk, collapses of point vortices with the boundary in finite time are impossible, hence the solution of the dynamics is global in time. We also give some necessary conditions for the existence of collapses with the boundary in general smooth bounded domains, in particular, that the trajectory of at least one point vortex has no limit. Some minor results are obtained with unsigned intensities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信